

# **Stormwater Management Report**

for

UNA VOCE, LLC Amended Site Plan

414 White Horse Pike Block 37, Lot 8 Haddon Heights, Camden County, NJ

> Prepared by IRVING DESIGN GROUP

an N. Myers, NJPE #43753

February 2024

IDG Project #: HILL-22-003

*irving design group, llc* 10 White Horse Pike & Haddon Heights, NJ 08035 & Phone 856-310-9200

## **1.0 INTRODUCTION**

UNA Voce (Applicant), has constructed an apartment building located at the intersection of White Horse Pike (NJSH Rt. 30) and Haddon Street in the Borough of Haddon Heights, Camden County, New Jersey. The project entailed the renovation of the existing structure and new construction of a 2,186 sf apartment complex, 12 stall proposed parking lot, lighting and landscaping which have all been previously approved.

This report has been prepared to accompany the latest amended minor site plan application for the project.

## 2.0 **PROJECT DESCRIPTION**

#### 2.1 **Pre-Existing and Existing (As-Built) Conditions**

The project is in Haddon Heights, New Jersey, at the intersection of the White Horse Pike (NJSH Rt. 30) and Haddon Street. The property can be found on the United States Geological Survey (USGS) 7.5- minute topographic quadrangle for Camden and Runnemede, New Jersey.

The subject property is located on a parcel identified on the Haddon Heights tax map as Block 37, Lot 8.

The pre-existing site generally consisted of three (3) space paved parking area and an existing  $2\frac{1}{2}$  story home. The surface coverage was 0.10 acres of existing impervious surfaces and 0.36 acres of existing pervious surfaces. The "site" was defined as the tax map property boundaries. For pre-existing condition runoff calculations, the "site" was previously analyzed as one Existing Drainage Area (EDA-1).

The pre-existing stormwater from the site collectively drained toward an existing inlet and storm conveyance system located approximately 170' south of the site on Haddon Street where it intersects East Atlantic Avenue.

#### 2.2 Previously Approved-As-Built Conditions

The previously approved, now constructed, project consists of the existing 2 <sup>1</sup>/<sub>2</sub> story home, 15space parking area (total), a now completed 2,186 sf apartment building, lighting and landscaping. The previously approved, now constructed, surface coverage consists of 0.26 acres of impervious surfaces and 0.20 acres of pervious surfaces. The as built conditions have not increased impervious surface coverage by more than 0.25 acres. The previously approved, now constructed, runoff calculations for the site were analyzed as one Proposed Drainage Area (PDA-1) which was previously submitted by RWD CONSULTANTS a division of PENNONI and approved.

#### 3.0 SOIL SURVEY AND PERMEABILITY INFORMATION

A review of soil information provided in the USDA Web Soil Survey Map Database Report for Camden County indicated the soils on the subject property consist of Freehold-Downer-Urban Land complex (FrpB) (Figure 1 within appendix 4: RWD/PENNONI 2017 Log).

### 3.1 Soil Permeability (Attached)

On November 16, 2017; Pennoni conducted one Test Pit (TP-1) onsite and tested soil permeability utilizing the Double Ring infiltrometer method (ASTM D 3385) field test. This test was completed by Josh Holderer of Pennoni. Soil Boring Log information was completed by Larissa Elder of Pennoni. The site did not show signs of previous soil disturbance in the area of testing. The weather was partly cloudy at the time of soil testing. Soil Permeability testing was conducted at approximately 6ft (72 inches).

## 3.2 Conclusion / Findings

USDS Soil Maps showed the area of the subject property to contain Freehold-Downer-Urban Land complex (FrpB) soil type. This soil type is considered to be Well Drained. Soil Boring Logs from the site visit on November 16, 2017 by Pennoni show the soil to contain layers of mostly silty loam with some clay layers present. The Soil Boring Log is provided as Figure 2 within appendix 4: RWD/PENNONI 2017 Log.

During the excavation, no water table or seasonal high water table was encountered. Most of the soil layers observed were dry or slightly damp.

Soil permeability testing resulted in an Infiltration Rate of 0.56cm/hr or 0.22in/hr. The Double Ring Field Data Sheet is provided in Figure 3 within appendix 4: RWD/PENNONI 2017 Log.

## 3.3 Underwood Soils Investigation of December 2023 (Attached)

Due to the failure of the open bioretention basin a new soils investigation was performed by Underwood Engineering Company on December 26, 2023. The Underwood findings confirmed the RWD/PENNONI findings with similar marginally better infiltration rates at depths approximately 12.4 feet lower than the RWD/PENNONI investigation in 2017 and 18 feet below the as-built bottom of the basin.

The soils at the bottom of the Underwood excavation (20.4 feet deep from pre-existing surface grade) yielded a low infiltration rate of 0.6in/hr compared to 0.2 in/hr (RWD/PENNONI 2017 investigation: 8 feet deep from pre-existing surface grade).

## 3.3a Investigation

Geotechnical Boring – (TB-1) One continuous geotechnical boring was completed at the stormwater basin location on December 26th, 2023. The test boring was carried out to a depth of approximately 18 feet below ground surface (BGS). All standard penetration testing (SPT) and split-barrel sampling of soils was performed in accordance with ASTM D-1586.

The soils encountered at the boring location TB-1 consisted generally of very soft loams underlain by medium dense sandy loams and stiff to very stiff loams. Groundwater was not encountered in TB-1. There were no seasonal high water indicators observed in the borehole.

Samples of the soils recovered during drilling operations were sealed in glass jars and

transported to the Underwood Soil Laboratory for Hydrometer and Sieve analysis per ASTM D-422 and will be stored for a period of no less than 30 days.

## 3.3b Findings

The soils tested were identified by visual classification in the field and confirmed by laboratory analysis. The soils tested consisted of sandy loams and loams. The permeability class ratings ranged from K2, or 0.6 to 2 inches per hour, to K3, or 2 to 6 inches per hour. A table containing the test location, depth, soil classification and laboratory permeability class ratings are provided in the table below: Results of permeability testing is contained in the table below:

|        | PERMEABILITY RESULTS |                                                         |  |  |  |  |  |  |  |
|--------|----------------------|---------------------------------------------------------|--|--|--|--|--|--|--|
| TEST # | TEST<br>DEPTH (FT)   | SOIL DESCRIPTION & TEXTURE<br>PERMEABILITY CLASS RATING |  |  |  |  |  |  |  |
| TB-1A  | 4 - 6                | SANDY LOAM K3 (2 – 6 IN/HR)                             |  |  |  |  |  |  |  |
| TB-1B  | 6 - 8                | LOAM K2 (0.6 – 2.0 IN/HR)                               |  |  |  |  |  |  |  |
| TB-1C  | 8 - 10               | LOAM K2 (0.6 – 2.0 IN/HR)                               |  |  |  |  |  |  |  |

\*Depths taken below existing ground surface elevations at test pit locations.

Note: It is anticipated that the field infiltration rates will be much slower than the laboratory rates due to the in place stiff consistency of the soils and the fine plus very fine sand contents (60-75%) of the soils.

## 4.0 DESIGN CRITERIA

In New Jersey, projects resulting in over one (1) acre of land disturbance, or 0.25 acres of new impervious surfaces are required to comply with the NJDEP's stormwater management rules at N.J.A.C. 7:8. The project is **NOT** considered a "major development" as the project will not disturb more than one (1) acre of land and the project will **NOT** increase impervious area by 0.25 acres.

## 4.1 Groundwater Recharge

Pursuant to N.J.A.C. 7:8-5.4(a)2, the groundwater recharge standards apply if either the 0.25 acre or one (1) acre threshold is exceeded. The previously approved now constructed project has not increased impervious surface coverage by more than 0.25 acres and has not disturbed more than one (1) acre of land. Therefore, the groundwater recharge standards **do not apply**.

## 4.2 Stormwater Quantity

Pursuant to N.J.A.C. 7:8-5.4(a)3, the runoff quantity standards apply if either the 0.25 acre or one (1) acre threshold s exceeded. The previously approved now constructed has not increased impervious surface coverage by more than 0.25 acres and will not disturb more than one (1) acre of land. Therefore, the water quantity standards **do not apply**. However,

both an underground infiltration system and an open bioretention basin were designed and previously approved. As a result of poor subsurface soil conditions and at the request of Bach Associates this amended site plan application to remedy the current open bioretention basin which has failed.

## 4.3 Water Quality

The previously approved project did not increase impervious surface coverage by more than 0.25 acres. Therefore, water quality treatment is **not required** pursuant to N.J.A.C. 7:8-5.5.

#### 5.0 METHODOLOGY

Stormwater for the proposed site was evaluated using the NRCS Technical Release 20/55 method of calculating runoff volume and rate. The site specifics were input into the HydroCAD Stormwater Modeling System program by HydroCAD Software Solutions LLC. Impervious and pervious areas were calculated as separate areas without weighted curve numbers (CNs).

The site is made up of the Freehold-Downer-Urban Land complex soils classification (FrpB) – (HYDROLOGIC SOIL GROUP 'B'), and slopes generally toward Haddon Street.

As this site has been previously approved and amended, criteria previously reviewed and approved to create hydrographs, flow rates, and volumes are utilized in the amended design. Specifically, the time of concentration (Tc) was determined to be a minimum of 6 minutes and the following table represents the rainfall data utilized in the calculations, based on the 24-hour, Type III, county rainfall amounts provided by NRCS:

| RAINFAL                  | L DEPTH INFORMATION                         |
|--------------------------|---------------------------------------------|
| STORM<br>FREQ.<br>(YEAR) | NOAA NWS PFDS<br>RAINFALL DEPTH<br>(INCHES) |
| 2                        | 3.31                                        |
| 10                       | 5.06                                        |
| 25                       | 6.28                                        |
| 100                      | 8.52                                        |

It should be noted that the original calculations and approval did not include the 25-year storm event, but at the request of Bach Associates, it has been included.

#### 6.0 RAIN GARDEN/VEGETATIVE FILTER STRIP

With the failure of the bioretention basin, due to poor subsurface soil conditions, a rain garden/vegetative filter strip is proposed to replace the bioretention basin. The rain

garden/vegetative filter strip is provided with an underdrain, that is connected to an outlet structure, which is connected to a proposed inlet on Haddon Street. The proposed inlet on Haddon Street is connected to an existing inlet located approximately 180 feet to the south. The proposed outlet structure, inlet, and connections provide a positive discharge to the existing downstream inlet located along Haddon Street.

Due to the existing topography and layout of the site, 8,389 sq.ft. of the site is captured and directed towards the rain garden/vegetative filter strip. The remaining 11,611 sq.ft. is uncaptured and continues with the existing overland flow towards Haddon Street. However, the uncaptured site runoff is collected in the gutter with the proposed inlet.

Currently, all the site runoff flows along the street gutter to the existing inlet approximately 170' to the south on Hadden Street. With the underdrain, and proposed inlet, all site runoff with be collected with a positive discharge connection to the downstream inlet, resulting in no site runoff flowing along the gutter in front of the neighboring property to the south.

## 7.0 SITE ANALYSIS

As a result of poor subsurface soil conditions, the site was re-evaluated for the use of a rain garden/vegetative filter strip in the area of the failed bioretention basin as an amended site plan application.

To avoid the use of hydrographs and data generated across different software modeling platforms (RWD/PENNONI utilized Pondpack V8i by Bentley while Irving Design Group utilized HydroCAD Software Solutions LLC) new hydrographs were generated for evaluation. It should be noted that there are differences in the modeling results. Most likely some of the difference can be attributed to large units of measure utilized in the PondPack software, even though it is a small site. The HydroCAD software modeling utilized small units of measure, which better defines the site.

Additionally, standard comparisons of predevelopment and post development volume and rate information do not appropriately provide evaluation of the site, especially since this site is not a major development and those requirements are not applicable.

The rain garden/vegetative filter strip is provided with an outlet structure, with a weir elevation of 67.00 and grate elevation of 67.5. Berm contouring and existing contours along the neighboring property line provide the lowest elevation of 68.0, near the right-of-way of Hadden Street.

Hydrographs are provided for the various storm events and provide a maximum water elevation for the 100-year storm event of 67.59, which is below the lowest neighboring property and therefore indicates no impact to the adjoining property.

| RAIN GARDEN/VEGETATIVE FILTER STRIP |                                |  |  |  |  |
|-------------------------------------|--------------------------------|--|--|--|--|
| STORM<br>FREQ.<br>(YR)              | MAX WATER<br>ELEVATION<br>(FT) |  |  |  |  |
| 2                                   | 67.28                          |  |  |  |  |
| 10                                  | 67.50                          |  |  |  |  |
| 25                                  | 67.56                          |  |  |  |  |
| 100                                 | 67.59                          |  |  |  |  |

#### 8.0 STORM SEWER DESIGN

A positive discharge connection from the underdrain of the rain garden is proposed to connect to a proposed inlet on Haddon Street, which will connect to the existing downstream inlet via a proposed 180' length of 15-inch diameter Class IV Reinforced Concrete Pipe (RCP).

The pipe was evaluated for the various storm events to ensure sufficient capacity for post development runoff from the captured site (rain garden/vegetative filter strip) as well as the uncaptured site area. Since the uncaptured site flows to Hadden Street and the gutter, it would be discharged to the proposed inlet and connecting pipe. Therefore, the two flows were routed through the inlet and result in the following maximum water elevations in the pipe:

| PROPOSED HADDEN STREET INLET<br>AND CONNECTION PIPE |                        |                                        |  |  |  |  |
|-----------------------------------------------------|------------------------|----------------------------------------|--|--|--|--|
| STORM<br>FREQ.<br>(YR)                              | PIPE VELOCITY<br>(FPS) | MAX WATER<br>ELEVATION IN PIPE<br>(FT) |  |  |  |  |
| 2                                                   | 2.17                   | 64.61                                  |  |  |  |  |
| 10                                                  | 2.51                   | 64.75                                  |  |  |  |  |
| 25                                                  | 2.87                   | 64.91                                  |  |  |  |  |
| 100                                                 | 3.23                   | 65.12                                  |  |  |  |  |

The proposed inlet is designed with an invert of 64.2, which means the maximum flow depth for the 100-year storm event that is attributable to the site is approximately 11 inches. This means that there is reserve capacity in the pipe for offsite flow, and that no site runoff would flow along the gutter of the neighboring property.

#### 9.0 SOIL EROSION AND SEDIMENT CONTROL

The project complied with the minimum design and performance standards for erosion control established under the Soil Erosion and Sediment Control Act, N.J.S.A. 4:24-39 et seq. and implementing rules.

#### **10.0 CONCLUSION**

The project is not considered a "major development" as the project will not disturb more than one (1) acre of land and the project will not increase impervious area by 0.25 acres. Therefore, the project is not required to address groundwater recharge, water quantity and water quality requirements of N.J.A.C. 7:8-5.4 and 7:8-5.5.

As described above, a rain garden/vegetative filter strip has been provided in the area where the bioretention basin failed due to poor soil conditions. As demonstrated with the hydrographs, there is no detrimental impact to the neighboring property.

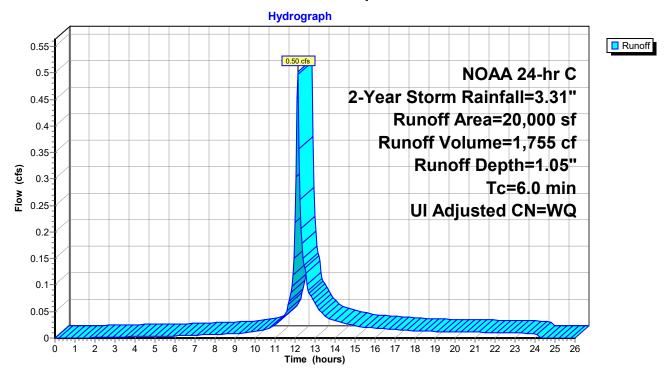


Pre-Development Summaries & Hydrographs

*írvíng desígn group, llc* 10 White Horse Pike & Haddon Heights, NJ 08035 & Phone 856-310-9200

|   | Event# | Event          | Storm Type | Curve | Mode    | Duration | B/B | Depth    | AMC |
|---|--------|----------------|------------|-------|---------|----------|-----|----------|-----|
| _ |        | Name           |            |       |         | (hours)  |     | (inches) |     |
|   | 1      | 2-Year Storm   | NOAA 24-hr | С     | Default | 24.00    | 1   | 3.31     | 2   |
|   | 2      | 10-Year Storm  | NOAA 24-hr | С     | Default | 24.00    | 1   | 5.06     | 2   |
|   | 3      | 25-Year Storm  | NOAA 24-hr | С     | Default | 24.00    | 1   | 6.28     | 2   |
|   | 4      | 100-Year Storm | NOAA 24-hr | С     | Default | 24.00    | 1   | 8.52     | 2   |

#### **Rainfall Events Listing**


Runoff = 0.50 cfs @ 12.14 hrs, Volume= Routed to nonexistent node 2P 1,755 cf, Depth= 1.05"

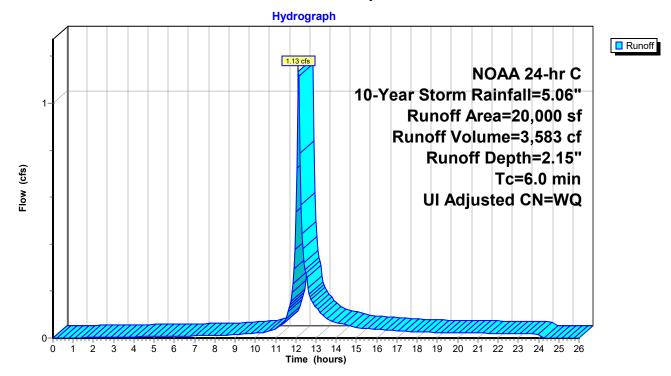
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Storm Rainfall=3.31"

|       | Area (sf)    | CN     | Adj   | Descript                      | Description |             |  |  |  |
|-------|--------------|--------|-------|-------------------------------|-------------|-------------|--|--|--|
|       | 15,644       | 61     | 61    | >75% Grass cover, Good, HSG B |             |             |  |  |  |
|       | 3,247        | 98     | 98    | Paved parking, HSG B          |             |             |  |  |  |
|       | 1,109        | 98     | 98    | Unconnected roofs, HSG B      |             |             |  |  |  |
|       | 20,000       |        |       | Weighted Average              |             |             |  |  |  |
|       | 15,644       | 61     | 61    | 78.22% Pervious Area          |             |             |  |  |  |
|       | 4,356        | 98     | 98    | 21.78% Impervious Area        |             |             |  |  |  |
|       | 1,109        |        |       | 25.46%                        | Unconn      | nected      |  |  |  |
| Та    | l e re entre | Class  | - \/- |                               |             | Description |  |  |  |
| To    | 5            | Slope  |       | elocity Capacity Description  |             |             |  |  |  |
| (min) | ) (feet)     | (ft/ft | ) (†  | /sec)                         | sec) (cfs)  |             |  |  |  |
|       |              |        |       |                               |             |             |  |  |  |



Direct Entry,




Runoff = 1.13 cfs @ 12.13 hrs, Volume= Routed to nonexistent node 2P 3,583 cf, Depth= 2.15"

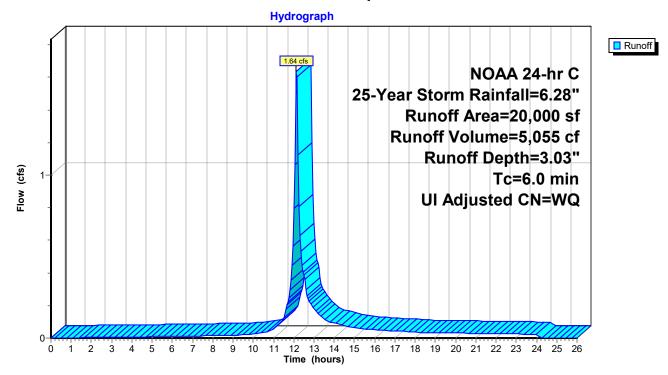
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Storm Rainfall=5.06"

|    | Area (sf)   | CN    | Adj   | Description                   |  |  |  |  |  |
|----|-------------|-------|-------|-------------------------------|--|--|--|--|--|
|    | 15,644      | 61    | 61    | >75% Grass cover, Good, HSG B |  |  |  |  |  |
|    | 3,247       | 98    | 98    | Paved parking, HSG B          |  |  |  |  |  |
|    | 1,109       | 98    | 98    | Unconnected roofs, HSG B      |  |  |  |  |  |
|    | 20,000      |       |       | Weighted Average              |  |  |  |  |  |
|    | 15,644      | 61    | 61    | 78.22% Pervious Area          |  |  |  |  |  |
|    | 4,356       | 98    | 98    | 21.78% Impervious Area        |  |  |  |  |  |
|    | 1,109       |       |       | 25.46% Unconnected            |  |  |  |  |  |
|    |             |       |       |                               |  |  |  |  |  |
|    | Tc Length   | Slop  |       | elocity Capacity Description  |  |  |  |  |  |
| (n | nin) (feet) | (ft/f | ť) (f | sec) (cfs)                    |  |  |  |  |  |
|    |             |       |       |                               |  |  |  |  |  |



Direct Entry,




Runoff = 1.64 cfs @ 12.13 hrs, Volume= Routed to nonexistent node 2P 5,055 cf, Depth= 3.03"

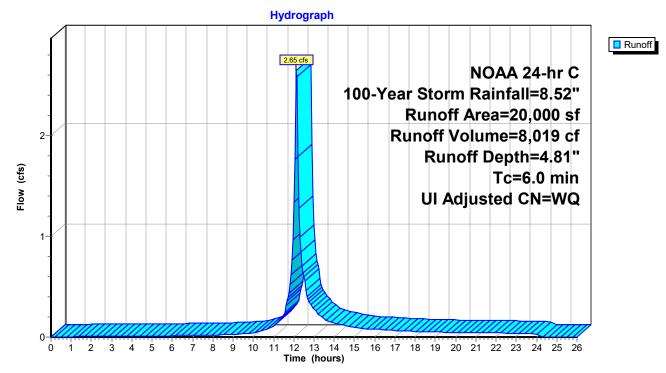
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs NOAA 24-hr C 25-Year Storm Rainfall=6.28"

|      | Area (sf) | CN            | Adj   | Description                   |  |  |  |  |
|------|-----------|---------------|-------|-------------------------------|--|--|--|--|
|      | 15,644    | 61            | 61    | >75% Grass cover, Good, HSG B |  |  |  |  |
|      | 3,247     | 98            | 98    | Paved parking, HSG B          |  |  |  |  |
|      | 1,109     | 98            | 98    | Unconnected roofs, HSG B      |  |  |  |  |
|      | 20,000    |               |       | Weighted Average              |  |  |  |  |
|      | 15,644    | 61            | 61    | 78.22% Pervious Area          |  |  |  |  |
|      | 4,356     | 98            | 98    | 21.78% Impervious Area        |  |  |  |  |
|      | 1,109     |               |       | 25.46% Unconnected            |  |  |  |  |
| _    |           | <u>.</u> .    | .,    |                               |  |  |  |  |
| To   | 5         | Slop          |       | locity Capacity Description   |  |  |  |  |
| (min | ) (feet)  | (ft/ft        | t) (f | sec) (cfs)                    |  |  |  |  |
| 0.0  | <b>`</b>  | Diverse Evene |       |                               |  |  |  |  |



Direct Entry,

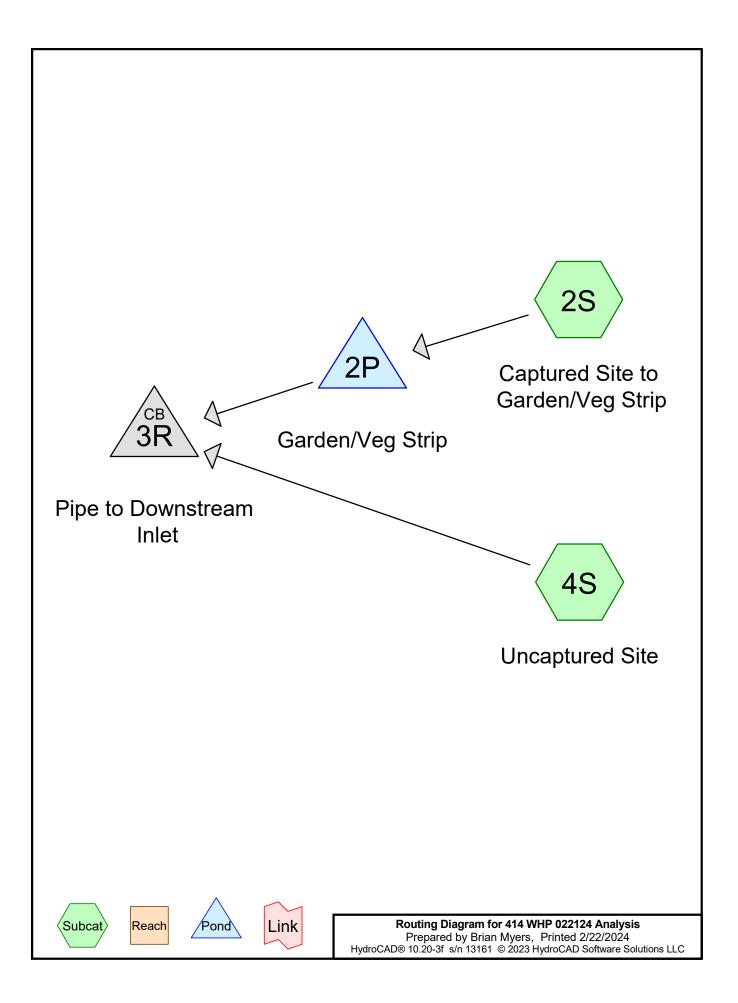



Runoff = 2.65 cfs @ 12.13 hrs, Volume= Routed to nonexistent node 2P 8,019 cf, Depth= 4.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Storm Rainfall=8.52"

|      | Area (sf) | CN            | Adj   | Description                   |  |  |  |  |
|------|-----------|---------------|-------|-------------------------------|--|--|--|--|
|      | 15,644    | 61            | 61    | >75% Grass cover, Good, HSG B |  |  |  |  |
|      | 3,247     | 98            | 98    | Paved parking, HSG B          |  |  |  |  |
|      | 1,109     | 98            | 98    | Unconnected roofs, HSG B      |  |  |  |  |
|      | 20,000    |               |       | Weighted Average              |  |  |  |  |
|      | 15,644    | 61            | 61    | 78.22% Pervious Area          |  |  |  |  |
|      | 4,356     | 98            | 98    | 21.78% Impervious Area        |  |  |  |  |
|      | 1,109     |               |       | 25.46% Unconnected            |  |  |  |  |
| _    |           | <u>.</u> .    | .,    |                               |  |  |  |  |
| To   | 5         | Slop          |       | locity Capacity Description   |  |  |  |  |
| (min | ) (feet)  | (ft/ft        | t) (f | sec) (cfs)                    |  |  |  |  |
| 0.0  | <b>`</b>  | Diverse Evene |       |                               |  |  |  |  |




Direct Entry,





Post Development Summaries & Hydrographs

*írvíng desígn group, llc* 10 White Horse Pike & Haddon Heights, NJ 08035 & Phone 856-310-9200



## 414 WHP 022124 Analysis

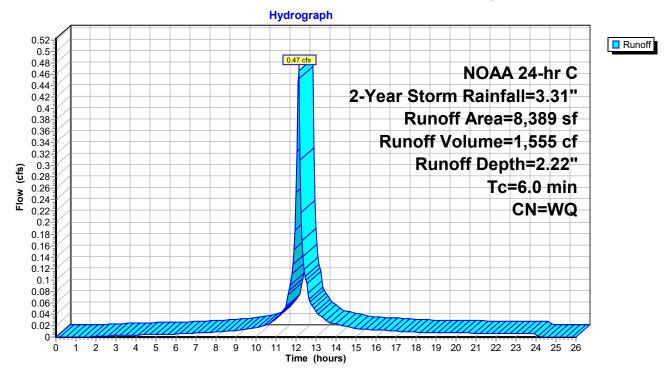
| Prepared by Brian Myers      |                                        |
|------------------------------|----------------------------------------|
| HydroCAD® 10.20-3f s/n 13161 | © 2023 HydroCAD Software Solutions LLC |

| <br>Event# | Event<br>Name  | Storm Type | Curve | Mode    | Duration<br>(hours) | B/B | Depth<br>(inches) | AMC |
|------------|----------------|------------|-------|---------|---------------------|-----|-------------------|-----|
| <br>1      | 2-Year Storm   | NOAA 24-hr | С     | Default | 24.00               | 1   | 3.31              | 2   |
| 2          | 10-Year Storm  | NOAA 24-hr | С     | Default | 24.00               | 1   | 5.06              | 2   |
| 3          | 25-Year Storm  | NOAA 24-hr | С     | Default | 24.00               | 1   | 6.28              | 2   |
| 4          | 100-Year Storm | NOAA 24-hr | С     | Default | 24.00               | 1   | 8.52              | 2   |

## **Rainfall Events Listing**

#### Summary for Subcatchment 2S: Captured Site to Garden/Veg Strip

Runoff = 0.47 cfs @ 12.13 hrs, Volume= Routed to Pond 2P : Garden/Veg Strip 1,555 cf, Depth= 2.22"


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Storm Rainfall=3.31"

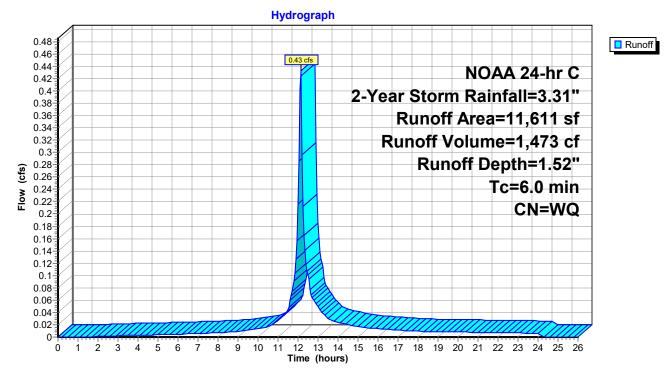
| A     | rea (sf) | CN    | Description                      |  |  |  |  |  |
|-------|----------|-------|----------------------------------|--|--|--|--|--|
|       | 2,766    | 61    | >75% Grass cover, Good, HSG B    |  |  |  |  |  |
|       | 3,935    | 98    | Paved parking, HSG B             |  |  |  |  |  |
|       | 1,688    | 98    | Unconnected roofs, HSG B         |  |  |  |  |  |
|       | 8,389    |       | Weighted Average                 |  |  |  |  |  |
|       | 2,766    | 61    | 32.97% Pervious Area             |  |  |  |  |  |
|       | 5,623    | 98    | 67.03% Impervious Area           |  |  |  |  |  |
|       | 1,688    |       | 30.02% Unconnected               |  |  |  |  |  |
| Тс    | Length   | Slop  | be Velocity Capacity Description |  |  |  |  |  |
| (min) | (feet)   | (ft/f |                                  |  |  |  |  |  |



Direct Entry,

#### Subcatchment 2S: Captured Site to Garden/Veg Strip




#### Summary for Subcatchment 4S: Uncaptured Site

Runoff = 0.43 cfs @ 12.13 hrs, Volume= 1,473 cf, Depth= 1.52" Routed to Pond 3R : Pipe to Downstream Inlet

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Storm Rainfall=3.31"

| A     | rea (sf)      | CN     | Description            |                      |               |  |  |  |  |  |
|-------|---------------|--------|------------------------|----------------------|---------------|--|--|--|--|--|
|       | 6,975         | 61     | >75% Gras              | s cover, Go          | Good, HSG B   |  |  |  |  |  |
|       | 2,206         | 98     | Paved park             | ing, HSG B           | В             |  |  |  |  |  |
|       | 2,430         | 98     | Unconnecte             | ed roofs, HS         | ISG B         |  |  |  |  |  |
|       | 11,611        |        | Weighted A             | Veighted Average     |               |  |  |  |  |  |
|       | 6,975         | 61     | 60.07% Per             | 60.07% Pervious Area |               |  |  |  |  |  |
|       | 4,636         | 98     | 39.93% Impervious Area |                      |               |  |  |  |  |  |
|       | 2,430         |        | 52.42% Un              | connected            | l             |  |  |  |  |  |
| Та    | l e se est le | Clara  | )/alaaitu              | Conseitu             | · Description |  |  |  |  |  |
| Tc    | Length        | Slop   |                        |                      |               |  |  |  |  |  |
| (min) | (feet)        | (ft/ft | ) (tt/sec)             | ) (ft/sec) (cfs)     |               |  |  |  |  |  |
| 6.0   |               |        |                        |                      | Direct Entry, |  |  |  |  |  |

#### Subcatchment 4S: Uncaptured Site

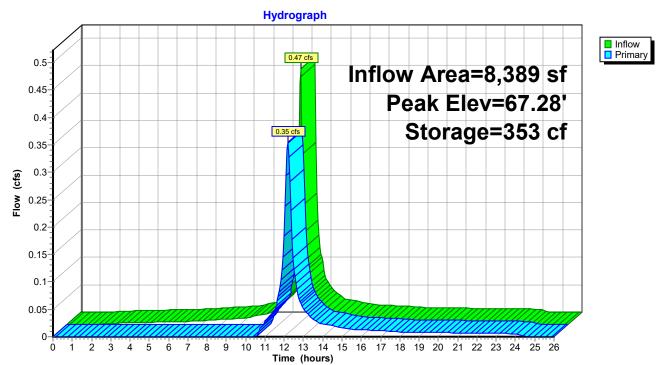


#### Summary for Pond 2P: Garden/Veg Strip

Inflow Area =8,389 sf, 67.03% Impervious, Inflow Depth =2.22" for 2-Year Storm eventInflow =0.47 cfs @12.13 hrs, Volume=1,555 cfOutflow =0.35 cfs @12.19 hrs, Volume=1,330 cf, Atten= 24%, Lag= 3.7 minPrimary =0.35 cfs @12.19 hrs, Volume=1,330 cfRouted to Pond 3R : Pipe to Downstream Inlet11

Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs Peak Elev= 67.28' @ 12.19 hrs Surf.Area= 513 sf Storage= 353 cf

Plug-Flow detention time= 128.2 min calculated for 1,330 cf (86% of inflow) Center-of-Mass det. time= 60.4 min (828.7 - 768.3)


| Volume      | Inv     | ert Avail.Sto | rage   | Storage                                                      | Description     |                                |  |  |
|-------------|---------|---------------|--------|--------------------------------------------------------------|-----------------|--------------------------------|--|--|
| #1          | 66.0    | 8 '00         | 25 cf  | Custom                                                       | Stage Data (Pr  | ismatic) Listed below (Recalc) |  |  |
| <b>-</b> 1  |         |               | L      | 0                                                            | 0               |                                |  |  |
| Elevatio    |         | Surf.Area     |        | Store                                                        | Cum.Store       |                                |  |  |
| (fee        | et)     | (sq-ft)       | (cubic | c-feet)                                                      | (cubic-feet)    |                                |  |  |
| 66.0        | 00      | 100           |        | 0                                                            | 0               |                                |  |  |
| 66.5        | 50      | 200           |        | 75                                                           | 75              |                                |  |  |
| 67.0        | 00      | 400           |        | 150                                                          | 225             |                                |  |  |
| 67.5        | 50      | 600           |        | 250                                                          | 475             |                                |  |  |
| 68.0        | 00      | 800           |        | 350                                                          | 825             |                                |  |  |
|             |         |               |        |                                                              |                 |                                |  |  |
| Device      | Routing | Invert        | Outle  | et Devices                                                   | S               |                                |  |  |
| #1          | Primary | 64.30'        | 15.0'  | ' Round                                                      | Culvert         |                                |  |  |
|             | ,       |               | L= 16  | 6.0' RCF                                                     | P. rounded edge | e headwall, Ke= 0.100          |  |  |
|             |         |               |        |                                                              |                 | 4.20' S= 0.0062 '/' Cc= 0.900  |  |  |
|             |         |               |        | n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf |                 |                                |  |  |
| #2 Device 1 |         | 67.00'        |        | <b>12.0" W x 2.0" H Vert. Orifice/Grate</b> C= 0.600         |                 |                                |  |  |
| 11 <b>Z</b> | 20100   | 07.00         | -      | Limited to weir flow at low heads                            |                 |                                |  |  |
| #3          |         |               |        | <b>10.0' long Top Grate Overflow</b> 0 End Contraction(s)    |                 |                                |  |  |
| π3          | DEVICE  | 07.50         | 10.0   |                                                              |                 |                                |  |  |
|             |         |               |        |                                                              |                 |                                |  |  |

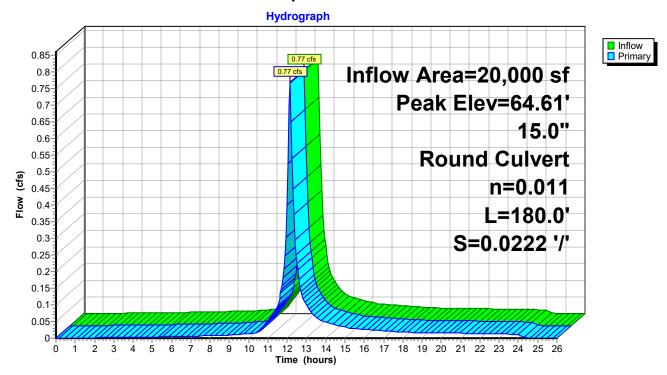
**Primary OutFlow** Max=0.35 cfs @ 12.19 hrs HW=67.28' (Free Discharge)

**-1=Culvert** (Passes 0.35 cfs of 11.39 cfs potential flow)

**2=Orifice/Grate** (Orifice Controls 0.35 cfs @ 2.11 fps)

-3=Top Grate Overflow (Controls 0.00 cfs)




## Pond 2P: Garden/Veg Strip

#### Summary for Pond 3R: Pipe to Downstream Inlet

Inflow Area = 20,000 sf, 51.30% Impervious, Inflow Depth = 1.68" for 2-Year Storm event Inflow 0.77 cfs @ 12.14 hrs, Volume= 2.803 cf = 0.77 cfs @ 12.14 hrs, Volume= Outflow 2,803 cf, Atten= 0%, Lag= 0.0 min = 2,803 cf Primary = 0.77 cfs @ 12.14 hrs, Volume= Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs Peak Elev= 64.61' @ 12.14 hrs Flood Elev= 67.20' Device Routing Invert Outlet Devices

| 001100 | rteating |        | o daot Botheeo                                                 |
|--------|----------|--------|----------------------------------------------------------------|
| #1     | Primary  | 64.20' | 15.0" Round Culvert                                            |
|        |          |        | L= 180.0' RCP, square edge headwall, Ke= 0.500                 |
|        |          |        | Inlet / Outlet Invert= 64.20' / 60.20' S= 0.0222 '/' Cc= 0.900 |
|        |          |        | n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf   |
|        |          |        |                                                                |

Primary OutFlow Max=0.76 cfs @ 12.14 hrs HW=64.61' (Free Discharge) ←1=Culvert (Inlet Controls 0.76 cfs @ 2.17 fps)

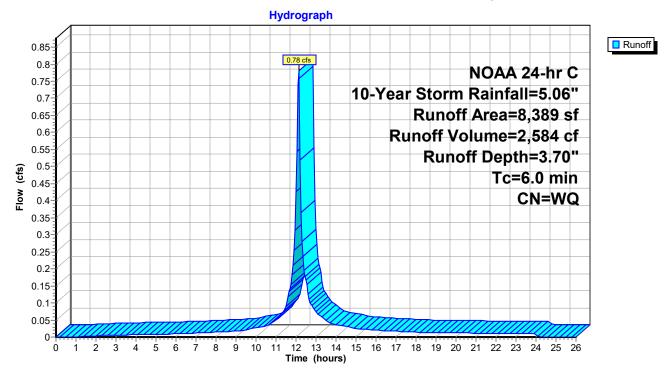


#### Pond 3R: Pipe to Downstream Inlet

#### Summary for Subcatchment 2S: Captured Site to Garden/Veg Strip

2,584 cf, Depth= 3.70"

Runoff = 0.78 cfs @ 12.13 hrs, Volume= Routed to Pond 2P : Garden/Veg Strip


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Storm Rainfall=5.06"

| A           | rea (sf)         | CN            | Description                   |  |  |  |  |  |  |
|-------------|------------------|---------------|-------------------------------|--|--|--|--|--|--|
|             | 2,766            | 61            | >75% Grass cover, Good, HSG B |  |  |  |  |  |  |
|             | 3,935            | 98            | Paved parking, HSG B          |  |  |  |  |  |  |
|             | 1,688            | 98            | Unconnected roofs, HSG B      |  |  |  |  |  |  |
|             | 8,389            |               | Weighted Average              |  |  |  |  |  |  |
|             | 2,766            | 61            | 32.97% Pervious Area          |  |  |  |  |  |  |
|             | 5,623            | 98            | 67.03% Impervious Area        |  |  |  |  |  |  |
|             | 1,688            |               | 30.02% Unconnected            |  |  |  |  |  |  |
| Tc<br>(min) | Length<br>(feet) | Slop<br>(ft/i |                               |  |  |  |  |  |  |

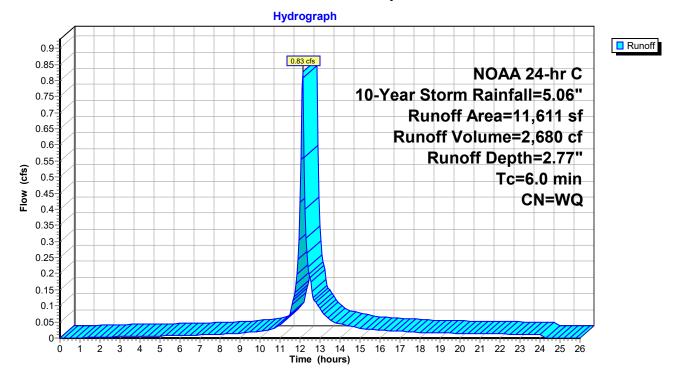


Direct Entry,

#### Subcatchment 2S: Captured Site to Garden/Veg Strip



#### Summary for Subcatchment 4S: Uncaptured Site


Runoff = 0.83 cfs @ 12.13 hrs, Volume= Routed to Pond 3R : Pipe to Downstream Inlet

2,680 cf, Depth= 2.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Storm Rainfall=5.06"

| A     | rea (sf) | CN    | Description |             |               |  |  |  |  |
|-------|----------|-------|-------------|-------------|---------------|--|--|--|--|
|       | 6,975    | 61    | >75% Grass  | s cover, Go | lood, HSG B   |  |  |  |  |
|       | 2,206    | 98    | Paved parki | ng, HSG B   | В             |  |  |  |  |
|       | 2,430    | 98    | Unconnecte  | d roofs, HS | ISG B         |  |  |  |  |
|       | 11,611   |       | Weighted A  | verage      |               |  |  |  |  |
|       | 6,975    | 61    | 60.07% Per  | vious Area  | а             |  |  |  |  |
|       | 4,636    | 98    | 39.93% Imp  | ervious Are | rea           |  |  |  |  |
|       | 2,430    |       | 52.42% Und  | connected   |               |  |  |  |  |
| Та    | Longth   | Clan  |             | Consoitu    | Description   |  |  |  |  |
| Tc    | Length   | Slop  |             |             |               |  |  |  |  |
| (min) | (feet)   | (ft/f | t) (ft/sec) | (cfs)       |               |  |  |  |  |
| 6.0   |          |       |             |             | Direct Entry, |  |  |  |  |

#### Subcatchment 4S: Uncaptured Site

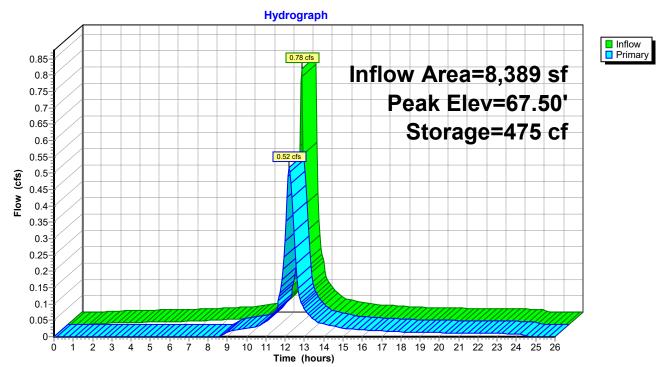


#### Summary for Pond 2P: Garden/Veg Strip

Inflow Area =8,389 sf, 67.03% Impervious, Inflow Depth =3.70" for 10-Year Storm eventInflow =0.78 cfs @12.13 hrs, Volume=2,584 cfOutflow =0.52 cfs @12.21 hrs, Volume=2,359 cf, Atten= 34%, Lag= 4.8 minPrimary =0.52 cfs @12.21 hrs, Volume=2,359 cfRouted to Pond 3R : Pipe to Downstream Inlet2,359 cf

Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs Peak Elev= 67.50' @ 12.21 hrs Surf.Area= 600 sf Storage= 475 cf

Plug-Flow detention time= 95.2 min calculated for 2,359 cf (91% of inflow) Center-of-Mass det. time= 47.8 min ( 812.3 - 764.5 )


| Volume           | Inv                | ert Avail.Sto | rage  | Storage                                                      | Description    |                                |  |  |
|------------------|--------------------|---------------|-------|--------------------------------------------------------------|----------------|--------------------------------|--|--|
| #1               | 66.0               | 8 '00         | 25 cf | Custom                                                       | Stage Data (Pr | ismatic) Listed below (Recalc) |  |  |
| <b>F</b> lavesti |                    | Current Amore |       | 0.1.0.00                                                     | Ourse Otherse  |                                |  |  |
| Elevatio         |                    | Surf.Area     |       | .Store                                                       | Cum.Store      |                                |  |  |
| (fee             | et)                | (sq-ft)       | (cubi | c-feet)                                                      | (cubic-feet)   |                                |  |  |
| 66.0             | 00                 | 100           |       | 0                                                            | 0              |                                |  |  |
| 66.5             | 50                 | 200           |       | 75                                                           | 75             |                                |  |  |
| 67.0             | 00                 | 400           |       | 150                                                          | 225            |                                |  |  |
| 67.5             | 50                 | 600           |       | 250                                                          | 475            |                                |  |  |
| 68.0             | 00                 | 800           |       | 350                                                          | 825            |                                |  |  |
|                  |                    |               |       |                                                              |                |                                |  |  |
| Device           | Routing            | Invert        | Outle | et Device:                                                   | S              |                                |  |  |
| #1               | Primary            | 64.30'        | 15.0  | " Round                                                      | Culvert        |                                |  |  |
|                  | ,                  |               | L= 1  | L= 16.0' RCP, rounded edge headwall, Ke= 0.100               |                | e headwall. Ke= 0.100          |  |  |
|                  |                    |               |       |                                                              |                | 64.20' S= 0.0062 '/' Cc= 0.900 |  |  |
|                  |                    |               |       | n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf |                |                                |  |  |
| #2               | #2 Device 1 67     |               |       | <b>12.0" W x 2.0" H Vert. Orifice/Grate</b> C= 0.600         |                |                                |  |  |
| 11 <b>Z</b>      | 20100              | 07.00         | -     | Limited to weir flow at low heads                            |                |                                |  |  |
| #3               | #3 Device 1 67.50' |               |       | <b>10.0' long Top Grate Overflow</b> 0 End Contraction(s)    |                |                                |  |  |
| #3               | Device             | 07.50         | 10.0  |                                                              |                |                                |  |  |
|                  |                    |               |       |                                                              |                |                                |  |  |

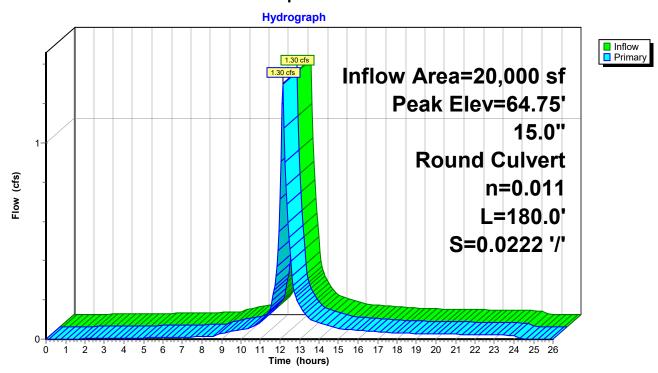
**Primary OutFlow** Max=0.51 cfs @ 12.21 hrs HW=67.50' (Free Discharge)

**-1=Culvert** (Passes 0.51 cfs of 12.05 cfs potential flow)

**2=Orifice/Grate** (Orifice Controls 0.51 cfs @ 3.09 fps)

-3=Top Grate Overflow (Controls 0.00 cfs)




## Pond 2P: Garden/Veg Strip

#### Summary for Pond 3R: Pipe to Downstream Inlet

Inflow Area = 20,000 sf, 51.30% Impervious, Inflow Depth = 3.02" for 10-Year Storm event Inflow 1.30 cfs @ 12.14 hrs, Volume= 5.039 cf = 1.30 cfs @ 12.14 hrs, Volume= Outflow 5,039 cf, Atten= 0%, Lag= 0.0 min = 1.30 cfs @ 12.14 hrs, Volume= Primary = 5,039 cf Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs Peak Elev= 64.75' @ 12.14 hrs Flood Elev= 67.20' Device Routing Invert Outlet Devices

| rteating | 1117011 | o dilot Botheed                                                |
|----------|---------|----------------------------------------------------------------|
| Primary  | 64.20'  | 15.0" Round Culvert                                            |
|          |         | L= 180.0' RCP, square edge headwall, Ke= 0.500                 |
|          |         | Inlet / Outlet Invert= 64.20' / 60.20' S= 0.0222 '/' Cc= 0.900 |
|          |         | n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf   |
|          | 9       | 5                                                              |

Primary OutFlow Max=1.28 cfs @ 12.14 hrs HW=64.74' (Free Discharge) ☐ 1=Culvert (Inlet Controls 1.28 cfs @ 2.51 fps)

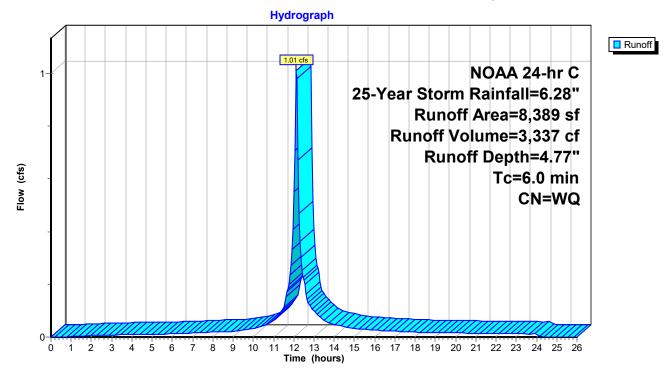


#### Pond 3R: Pipe to Downstream Inlet

#### Summary for Subcatchment 2S: Captured Site to Garden/Veg Strip

3,337 cf, Depth= 4.77"

Runoff = 1.01 cfs @ 12.13 hrs, Volume= Routed to Pond 2P : Garden/Veg Strip


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs NOAA 24-hr C 25-Year Storm Rainfall=6.28"

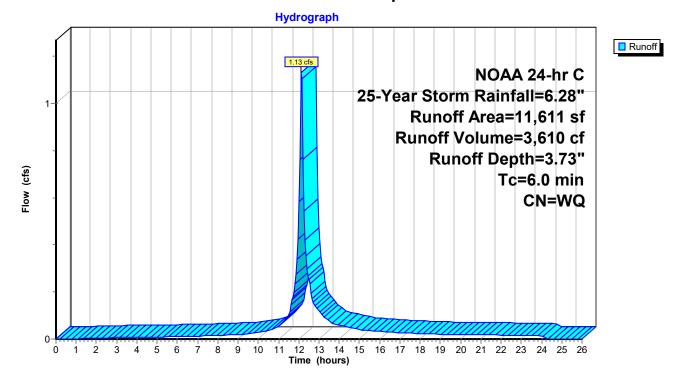
| A     | rea (sf) | CN    | Description                     |  |  |  |  |  |  |
|-------|----------|-------|---------------------------------|--|--|--|--|--|--|
|       | 2,766    | 61    | >75% Grass cover, Good, HSG B   |  |  |  |  |  |  |
|       | 3,935    | 98    | Paved parking, HSG B            |  |  |  |  |  |  |
|       | 1,688    | 98    | Unconnected roofs, HSG B        |  |  |  |  |  |  |
|       | 8,389    |       | Weighted Average                |  |  |  |  |  |  |
|       | 2,766    | 61    | 32.97% Pervious Area            |  |  |  |  |  |  |
|       | 5,623    | 98    | 67.03% Impervious Area          |  |  |  |  |  |  |
|       | 1,688    |       | 30.02% Unconnected              |  |  |  |  |  |  |
| _     |          |       |                                 |  |  |  |  |  |  |
| Тс    | Length   | Slop  | e Velocity Capacity Description |  |  |  |  |  |  |
| (min) | (feet)   | (ft/1 | t) (ft/sec) (cfs)               |  |  |  |  |  |  |



Direct Entry,

#### Subcatchment 2S: Captured Site to Garden/Veg Strip




#### Summary for Subcatchment 4S: Uncaptured Site

Runoff = 1.13 cfs @ 12.13 hrs, Volume= 3,610 cf, Depth= 3.73" Routed to Pond 3R : Pipe to Downstream Inlet

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs NOAA 24-hr C 25-Year Storm Rainfall=6.28"

| A     | rea (sf) | CN     | Description |                  |               |  |  |  |  |  |
|-------|----------|--------|-------------|------------------|---------------|--|--|--|--|--|
|       | 6,975    | 61     | >75% Gras   | s cover, Go      | lood, HSG B   |  |  |  |  |  |
|       | 2,206    | 98     | Paved park  | ing, HSG B       | В             |  |  |  |  |  |
|       | 2,430    | 98     | Unconnecte  | ed roofs, HS     | ISG B         |  |  |  |  |  |
|       | 11,611   |        | Weighted A  | Veighted Average |               |  |  |  |  |  |
|       | 6,975    | 61     | 60.07% Pei  |                  | a             |  |  |  |  |  |
|       | 4,636    | 98     | 39.93% Imp  | pervious Are     | rea           |  |  |  |  |  |
|       | 2,430    |        | 52.42% Un   | connected        |               |  |  |  |  |  |
| Тс    | Length   | Slope  | e Velocity  | Capacity         | Description   |  |  |  |  |  |
| (min) | (feet)   | (ft/ft | ,           | (cfs)            | 1             |  |  |  |  |  |
| 6.0   |          |        | ,           |                  | Direct Entry, |  |  |  |  |  |

#### Subcatchment 4S: Uncaptured Site



#### Summary for Pond 2P: Garden/Veg Strip

Inflow Area =8,389 sf, 67.03% Impervious, Inflow Depth =4.77"for 25-Year Storm eventInflow =1.01 cfs @12.13 hrs, Volume=3,337 cfOutflow =0.97 cfs @12.16 hrs, Volume=3,112 cf, Atten= 4%, Lag= 2.0 minPrimary =0.97 cfs @12.16 hrs, Volume=3,112 cfRouted to Pond 3R : Pipe to Downstream Inlet3,112 cf

Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs Peak Elev= 67.56' @ 12.17 hrs Surf.Area= 623 sf Storage= 510 cf

Plug-Flow detention time= 79.5 min calculated for 3,106 cf (93% of inflow) Center-of-Mass det. time= 41.5 min ( 804.2 - 762.7 )

| Volume           | Inve               | ert Avail.Sto | rage                                                                                                          | Storage                                                                                        | Description    |                                |  |  |
|------------------|--------------------|---------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------|--------------------------------|--|--|
| #1               | 66.0               | 00' 82        | 25 cf                                                                                                         | Custom                                                                                         | Stage Data (Pr | ismatic) Listed below (Recalc) |  |  |
| <b>F</b> lavesti |                    | Courf Arres   | lu a l                                                                                                        | 01                                                                                             | Ourse Otherse  |                                |  |  |
| Elevatio         |                    | Surf.Area     |                                                                                                               | Store                                                                                          | Cum.Store      |                                |  |  |
| (fee             | et)                | (sq-ft)       | (cubic                                                                                                        | -feet)                                                                                         | (cubic-feet)   |                                |  |  |
| 66.0             | 00                 | 100           |                                                                                                               | 0                                                                                              | 0              |                                |  |  |
| 66.5             | 50                 | 200           |                                                                                                               | 75                                                                                             | 75             |                                |  |  |
| 67.0             | 00                 | 400           |                                                                                                               | 150                                                                                            | 225            |                                |  |  |
| 67.5             | 50                 | 600           |                                                                                                               | 250                                                                                            | 475            |                                |  |  |
| 68.0             | 00                 | 800           |                                                                                                               | 350                                                                                            | 825            |                                |  |  |
|                  |                    |               |                                                                                                               |                                                                                                |                |                                |  |  |
| Device           | Routing            | Invert        | Outle                                                                                                         | t Devices                                                                                      | 5              |                                |  |  |
| #1               | Primary            | 64.30'        | 15.0"                                                                                                         | Round                                                                                          | Culvert        |                                |  |  |
|                  | ,                  |               | L= 16.0' RCP, rounded edge headwall, Ke= 0.100                                                                |                                                                                                |                | e headwall, Ke= 0.100          |  |  |
|                  |                    |               |                                                                                                               |                                                                                                |                | 64.20' S= 0.0062 '/' Cc= 0.900 |  |  |
|                  |                    |               |                                                                                                               | -                                                                                              |                |                                |  |  |
| #2               | #2 Device 1 67.00' |               | n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf<br>12.0" W x 2.0" H Vert. Orifice/Grate C= 0.600 |                                                                                                |                |                                |  |  |
| π <b>∠</b>       | Device             | 07.00         |                                                                                                               |                                                                                                |                |                                |  |  |
| #2               | #2 Device 1 67.50  |               |                                                                                                               | Limited to weir flow at low heads<br><b>10.0' long Top Grate Overflow</b> 0 End Contraction(s) |                |                                |  |  |
| #3               | Device 1           | 67.50'        | 10.0                                                                                                          | iong rop                                                                                       | o Grate Overno |                                |  |  |
|                  |                    |               |                                                                                                               |                                                                                                |                |                                |  |  |

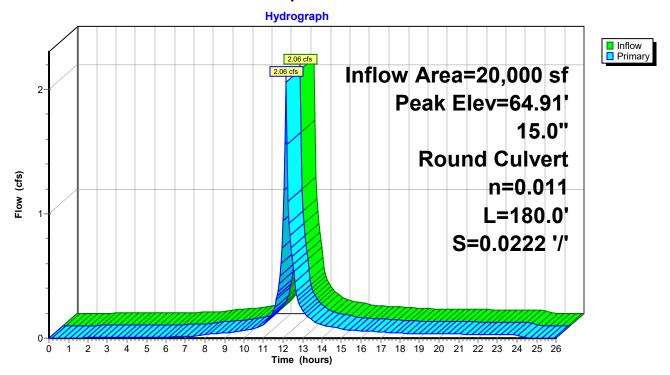
**Primary OutFlow** Max=0.91 cfs @ 12.16 hrs HW=67.55' (Free Discharge)

-**1=Culvert** (Passes 0.91 cfs of 12.20 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.55 cfs @ 3.28 fps)

-3=Top Grate Overflow (Weir Controls 0.36 cfs @ 0.73 fps)

Hydrograph Inflow Primary 1.01 cfs Inflow Area=8,389 sf 1 Peak Elev=67.56' Storage=510 cf Flow (cfs) 0-1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Ó Time (hours)


## Pond 2P: Garden/Veg Strip

#### Summary for Pond 3R: Pipe to Downstream Inlet

Inflow Area = 20,000 sf, 51.30% Impervious, Inflow Depth = 4.03" for 25-Year Storm event Inflow 2.06 cfs @ 12.15 hrs, Volume= 6.722 cf = 2.06 cfs @ 12.15 hrs, Volume= Outflow 6,722 cf, Atten= 0%, Lag= 0.0 min = 2.06 cfs @ 12.15 hrs, Volume= Primary = 6,722 cf Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs Peak Elev= 64.91' @ 12.15 hrs Flood Elev= 67.20' Device Routing Invert Outlet Devices

| #1 | Primary | 64.20' | 15.0" Round Culvert                                            |
|----|---------|--------|----------------------------------------------------------------|
|    |         |        | L= 180.0' RCP, square edge headwall, Ke= 0.500                 |
|    |         |        | Inlet / Outlet Invert= 64.20' / 60.20' S= 0.0222 '/' Cc= 0.900 |
|    |         |        | n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf   |
|    |         |        |                                                                |

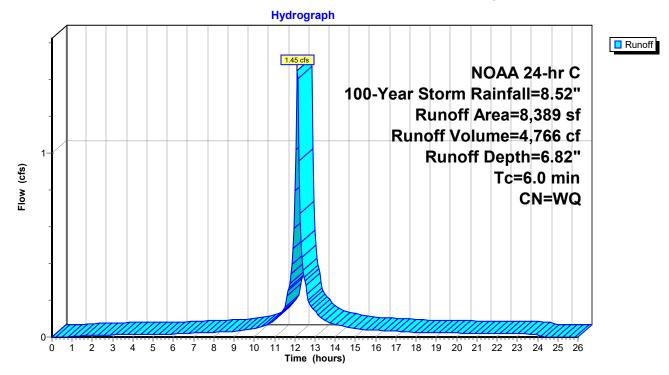
Primary OutFlow Max=2.06 cfs @ 12.15 hrs HW=64.91' (Free Discharge) ←1=Culvert (Inlet Controls 2.06 cfs @ 2.87 fps)



#### Pond 3R: Pipe to Downstream Inlet

#### Summary for Subcatchment 2S: Captured Site to Garden/Veg Strip

Runoff = 1.45 cfs @ 12.13 hrs, Volume= Routed to Pond 2P : Garden/Veg Strip 4,766 cf, Depth= 6.82"


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Storm Rainfall=8.52"

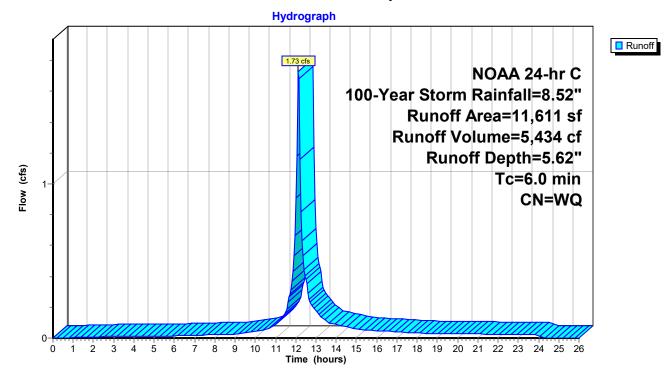
| A     | rea (sf) | CN    | Description                      |                               |              |  |  |  |  |  |  |  |  |
|-------|----------|-------|----------------------------------|-------------------------------|--------------|--|--|--|--|--|--|--|--|
|       | 2,766    | 61    | >75% Grass                       | >75% Grass cover, Good, HSG B |              |  |  |  |  |  |  |  |  |
|       | 3,935    | 98    | Paved parki                      | ng, HSG B                     | В            |  |  |  |  |  |  |  |  |
|       | 1,688    | 98    | Unconnecte                       | d roofs, HS                   | ISG B        |  |  |  |  |  |  |  |  |
|       | 8,389    |       | Weighted A                       | Weighted Average              |              |  |  |  |  |  |  |  |  |
|       | 2,766    | 61    | 32.97% Per                       | vious Area                    | a            |  |  |  |  |  |  |  |  |
|       | 5,623    | 98    | 67.03% Imp                       | ervious Are                   | Irea         |  |  |  |  |  |  |  |  |
|       | 1,688    |       | 30.02% Und                       | 30.02% Unconnected            |              |  |  |  |  |  |  |  |  |
| _     |          |       |                                  |                               |              |  |  |  |  |  |  |  |  |
| Тс    | Length   | Slop  | be Velocity Capacity Description |                               |              |  |  |  |  |  |  |  |  |
| (min) | (feet)   | (ft/f | t) (ft/sec)                      | (ft/sec) (cfs)                |              |  |  |  |  |  |  |  |  |
| 6.0   |          |       |                                  |                               | Direct Entry |  |  |  |  |  |  |  |  |



Direct Entry,

#### Subcatchment 2S: Captured Site to Garden/Veg Strip




#### Summary for Subcatchment 4S: Uncaptured Site

Runoff = 1.73 cfs @ 12.13 hrs, Volume= 5,434 cf, Depth= 5.62" Routed to Pond 3R : Pipe to Downstream Inlet

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Storm Rainfall=8.52"

| A     | rea (sf)      | CN     | Description                   |          |               |  |  |  |  |  |
|-------|---------------|--------|-------------------------------|----------|---------------|--|--|--|--|--|
|       | 6,975         | 61     | >75% Grass cover, Good, HSG B |          |               |  |  |  |  |  |
|       | 2,206         | 98     | Paved parking, HSG B          |          |               |  |  |  |  |  |
|       | 2,430         | 98     | Unconnected roofs, HSG B      |          |               |  |  |  |  |  |
|       | 11,611        |        | Weighted Average              |          |               |  |  |  |  |  |
|       | 6,975         | 61     | 60.07% Pervious Area          |          |               |  |  |  |  |  |
|       | 4,636         | 98     | 39.93% Impervious Area        |          |               |  |  |  |  |  |
|       | 2,430         |        | 52.42% Unconnected            |          |               |  |  |  |  |  |
| Та    | l e se est le | Clara  | )/alaaitu                     | Conseitu | · Description |  |  |  |  |  |
| Tc    | Length        | Slop   |                               | Capacity |               |  |  |  |  |  |
| (min) | (feet)        | (ft/ft | ) (ft/sec)                    | (cfs)    |               |  |  |  |  |  |
| 6.0   |               |        |                               |          | Direct Entry, |  |  |  |  |  |

#### Subcatchment 4S: Uncaptured Site



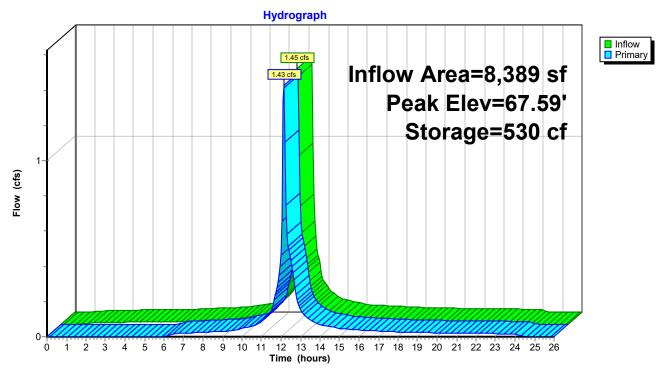
#### Summary for Pond 2P: Garden/Veg Strip

Inflow Area =8,389 sf, 67.03% Impervious, Inflow Depth =6.82" for 100-Year Storm eventInflow =1.45 cfs @12.13 hrs, Volume=4,766 cfOutflow =1.43 cfs @12.13 hrs, Volume=4,541 cf, Atten= 2%, Lag= 0.4 minPrimary =1.43 cfs @12.13 hrs, Volume=4,541 cfRouted to Pond 3R : Pipe to Downstream Inlet4,541 cf4,541 cf

Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs Peak Elev= 67.59' @ 12.13 hrs Surf.Area= 635 sf Storage= 530 cf

Plug-Flow detention time= 61.4 min calculated for 4,533 cf (95% of inflow) Center-of-Mass det. time= 33.4 min (793.5 - 760.2)

| Volume                                         | Inve             | ert Avail.Sto | rage                                                      | Storage                                        | Description    |                                |  |  |
|------------------------------------------------|------------------|---------------|-----------------------------------------------------------|------------------------------------------------|----------------|--------------------------------|--|--|
| #1                                             | 66.0             | 00' 82        | 25 cf                                                     | Custom                                         | Stage Data (Pr | ismatic) Listed below (Recalc) |  |  |
|                                                |                  | 0 ( )         |                                                           | 01                                             |                |                                |  |  |
| Elevation                                      |                  | Surf.Area     | Inc.Store                                                 |                                                | Cum.Store      |                                |  |  |
| (feet)                                         |                  | (sq-ft)       | (cubic-feet)                                              |                                                | (cubic-feet)   |                                |  |  |
| 66.00                                          |                  | 100           |                                                           | 0                                              | 0              |                                |  |  |
| 66.50                                          |                  | 200           |                                                           | 75                                             | 75             |                                |  |  |
| 67.00                                          |                  | 400           |                                                           | 150                                            | 225            |                                |  |  |
| 67.50                                          |                  | 600           |                                                           | 250                                            | 475            |                                |  |  |
| 68.0                                           | 00               | 800           |                                                           | 350                                            | 825            |                                |  |  |
|                                                |                  |               |                                                           |                                                |                |                                |  |  |
| Device                                         | Routing          | Invert        | Outle                                                     | et Devices                                     | S              |                                |  |  |
| #1                                             | #1 Primary 64.30 |               | 15.0" Round Culvert                                       |                                                |                |                                |  |  |
|                                                | 2                | ,             |                                                           | L= 16.0' RCP, rounded edge headwall, Ke= 0.100 |                |                                |  |  |
| Inlet / Outlet Invert= 64.30' / 64.20' S=      |                  |               |                                                           |                                                |                |                                |  |  |
| n= 0.011 Concrete pipe, straight & clean, Flow |                  |               |                                                           | ight & clean. Flow Area= 1.23 sf               |                |                                |  |  |
| #2                                             | Device 1         | 67.00'        | <b>12.0" W x 2.0" H Vert. Orifice/Grate</b> C= 0.600      |                                                |                |                                |  |  |
|                                                | /                |               | Limited to weir flow at low heads                         |                                                |                |                                |  |  |
| #3                                             | Device 1         | 67.50'        | <b>10.0' long Top Grate Overflow</b> 0 End Contraction(s) |                                                |                |                                |  |  |
|                                                | /                |               |                                                           |                                                |                |                                |  |  |
|                                                |                  | •••••         | $\sim$                                                    | <u>.</u>                                       |                |                                |  |  |


**Primary OutFlow** Max=1.38 cfs @ 12.13 hrs HW=67.59' (Free Discharge)

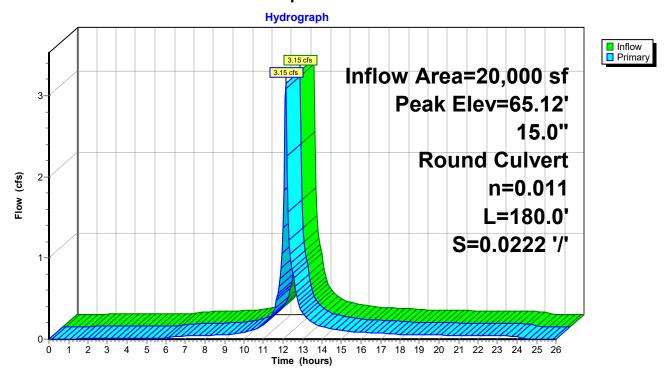
-**1=Culvert** (Passes 1.38 cfs of 12.31 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.57 cfs @ 3.41 fps)

-3=Top Grate Overflow (Weir Controls 0.82 cfs @ 0.96 fps)

Prepared by Brian Myers HydroCAD® 10.20-3f s/n 13161 © 2023 HydroCAD Software Solutions LLC




Pond 2P: Garden/Veg Strip

#### Summary for Pond 3R: Pipe to Downstream Inlet

Inflow Area = 20,000 sf, 51.30% Impervious, Inflow Depth = 5.99" for 100-Year Storm event Inflow 3.15 cfs @ 12.13 hrs, Volume= 9.975 cf = 3.15 cfs @ 12.13 hrs, Volume= Outflow 9,975 cf, Atten= 0%, Lag= 0.0 min = 3.15 cfs @ 12.13 hrs, Volume= 9,975 cf Primary = Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs Peak Elev= 65.12' @ 12.13 hrs Flood Elev= 67.20' Dovice Pouting Invert Outlet Devices

| Device | Rouling | Inven  |                                                                                                                  |
|--------|---------|--------|------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 64.20' | 15.0" Round Culvert                                                                                              |
|        |         |        | L= 180.0' RCP, square edge headwall, Ke= 0.500<br>Inlet / Outlet Invert= 64.20' / 60.20' S= 0.0222 '/' Cc= 0.900 |
|        |         |        | n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf                                                     |

Primary OutFlow Max=3.04 cfs @ 12.13 hrs HW=65.10' (Free Discharge) ←1=Culvert (Inlet Controls 3.04 cfs @ 3.23 fps)



#### Pond 3R: Pipe to Downstream Inlet



Previous Pennoni Stormwater Report (abbreviated)

*irving design group, llc* 10 White Horse Pike & Haddon Heights, NJ 08035 & Phone 856-310-9200

2 Aquarium Drive Suite 320 Camden, NJ 08103 T: 856-668-8600 F: 856-668-8610

www.pennoni.com

# **TECHNICAL REPORT**

# **STORMWATER MANAGEMENT REPORT**

# HADDON HEIGHTS APARMENT COMPLEX 414 WHITE HORSE PIKE BLOCK 37, LOT 8 HADDON HEIGHTS CAMDEN COUNTY, NEW JERSEY



# **Prepared For:**

UNA VOCE 417 White Horse Pike Suite E Haddon Heights, New Jersey 08035

# **Prepared By:**

RWD Consultants A Division of Pennoni 2 Aquarium Drive, Suite 320 Camden, New Jersey 08103 T: 856-668-8600

Joseph Raday, PE New Jersey License No. 24GE043768

EV. 8-30-18 March 2, 2017 May 10, 2017



RWO Consultants

Invision of Pennoni

#### **STORMWATER SUMMARY**

#### **1.0 INTRODUCTION**

**UNA Voce (Applicant)**, is proposing to construct an apartment building located at the intersection of White Horse Pike (NJSH Rt. 30) and Haddon Street in the Borough of Haddon Heights, Camden County, New Jersey. The project entails the construction of a 2,698 sf apartment complex, 12 proposed parking spaces, lighting and landscaping.

This report has been prepared to accompany the preliminary/final minor site plan application for the project.

#### 2.0 PROJECT DESCRIPTION

#### 2.1 Existing Conditions

The project is in Haddon Heights, New Jersey, at the intersection of the White Horse Pike (NJSH Rt. 30) and Haddon Street. The property can be found on the United States Geological Survey (USGS) 7.5- minute topographic quadrangle for <u>Camden and Runnemede</u>, New Jersey. A copy of the USGS map is provided as Figure 1.

The subject property is located on a parcel identified as Block 81.05, Lot 1. A copy of the Tax map is provided as Figure 2.

The existing site generally consists of three (3) space paved parking area and an existing 2 ½ story home. The surface coverage consists of 0.10 acres of existing impervious surfaces and 0.36 acres of existing pervious surfaces. The "site" is defined as the tax map property boundaries. For existing condition runoff calculations, the "site" was analyzed as one Existing Drainage Area (EDA-1).

The stormwater from the site collectively drains towards an existing inlet and storm conveyance system located approximately 170' south on Haddon Street.

#### 2.2 Proposed Conditions

The proposed project consists of an existing 2 ½ story home, 15-space parking area (total), a proposed 2,698 sf apartment building, lighting and landscaping. The proposed surface coverage consists of 0.26 acres of impervious surfaces and 0.20 acres of pervious surfaces. The proposed conditions will **not** increase impervious surface coverage by more than 0.25 acres. For proposed condition runoff calculations, the site was analyzed as one Proposed Drainage Area (PDA-1).

#### 3.0 SOIL SURVEY INFORMATION

A review of soil information provided in the USDA Web Soil Survey Map Database Report for Camden County indicates that the soils on the subject property consist of Freehold-Downer-Urban Land complex (FrpB) (Figure 3).

#### 4.0 DESIGN CRITERIA

The design of stormwater was performed in accordance with the New Jersey administrative code ("NJAC") chapter 7:8 stormwater requirements utilizing the New Jersey Department of Environmental Protection ("NJDEP") Best Management Practices ("BMP") Design Manual.

In New Jersey, projects resulting in over one (1) acre of land disturbance or 0.25 acres of new impervious surfaces are required to comply with the NJDEP's stormwater management rules at N.J.A.C. 7:8. The project is **not** considered a "major development" as the project will not disturb more than one (1) acre of land and the project will not increase impervious area by 0.25 acres.

#### 4.1 Groundwater Recharge

Pursuant to N.J.A.C. 7:8-5.4(a)2, the groundwater recharge standards apply if either the 0.25 acre or one (1) acre threshold is exceeded. The proposed project **will not** increase impervious surface coverage by more than 0.25 acres and will not disturb more than one (1) acre of land. Therefore, the groundwater recharge standards do not apply.

#### 4.2 Stormwater Quantity

Pursuant to N.J.A.C. 7:8-5.4(a)3, the runoff quantity standards apply if either the 0.25 acre or one (1) acre threshold s exceeded. The proposed project **will not** increase impervious surface coverage by more than 0.25 acres and will not disturb more than one (1) acre of land. Therefore, the water quantity standards do not apply. However, a rain garden has been incorporated into the project design to capture roof runoff leaving the site (See table 1 Pre-Developed vs. Post-Developed Total Site Discharge Comparison). The rain garden will reduce the rate of runoff for the 100-year storm event.

#### 4.3 Water Quality

The proposed project **will not** increase impervious surface coverage by more than 0.25 acres. Therefore, water quality treatment is not required pursuant to N.J.A.C. 7:8-5.5.

## 5.0 TECHNIQUES OF ANALYSIS

In accordance with the stormwater runoff calculation methodology at N.J.A.C. 7:8-5.6, the quantity (volume and rate) of stormwater runoff for pre- and post-developed conditions is calculated based on the USDA NRCS methodology as described in Technical Release 55 - Urban Hydrology for Small Watersheds (TR-55), dated June 1986.

Due to the area being mostly impervious, time of concentration (TC) was determined to be a minimum of 6 minutes.

Curve numbers (CN) for the drainage areas are based on the hydrologic soil group and land use. The developed area is made up of Freehold-Downer-Urban Land complex (FrpB), Type B soils, therefore CN's of 61 for lawn and landscaped areas, and 98 for impervious areas were utilized.

The impervious areas were calculated as separate subareas to generate hydrographs without weighted CNs as outlined in the N.J. Best Management Practices Manual Chapter 5.

Using the drainage areas, the TCs and CNs as input data, the hydrologic/hydraulic software program Pondpack V8i by Bentley, was utilized to generate the runoff volumes and rates.

# 6.0 KEY HYDROLOGIC PRINCIPALS

A 24-hour, Type III storm distribution was utilized with the following rainfall amounts, within Camden County for each storm analyzed. The DelMarVa unit hydrograph was utilized in the calculations. NRCS 24 hr. design storm rainfall depths for New Jersey, as revised September 2004, are used in the calculation.

| 2 year   | 3.31 inches |
|----------|-------------|
| 10 year  | 5.06 inches |
| 100 year | 8.51 inches |

## 7.0 PRE-DEVELOPED VS. POST-DEVELOPED RUNOFF COMPARISON

The proposed project will generate a minimal increase in the total runoff leaving the site for the 2, 10, 25 and 100-year storm events. Hydrographs generated for the pre- and post-developed drainage areas and are provided in Appendices A and B respectively. The results are detailed in Table 1 below. The pre- and post-developed drainage area boundaries are depicted on sheets CS9001 and CS9002 in Appendix D.

TABLE 1 - PRE-DEVELOPED VS. POST-DEVELOPED TOTAL SITE DISCHARGE COMPARISON

| Storm<br>Event | Pre-<br>Developed<br>Total Site<br>Discharge<br>(cfs) | Pre-Developed<br>Total Site<br>Runoff Volume<br>(cf) | Post-<br>Developed<br>Total Site<br>Discharge<br>(cfs) | Post-<br>Developed<br>Total Site<br>Runoff Volume<br>(cf) | Runoff<br>Increase<br>From Pre-<br>Developed<br>(cfs) |
|----------------|-------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|
| 2              | 0.34                                                  | 1,742                                                | 9.440.57                                               | 2,178 2.78                                                | 6 +0.10 +                                             |
| 10             | 0.77                                                  | 3,572                                                | 0.83 1:02                                              | 3,964 49                                                  | 14 +0.06 +                                            |
| 25             | 1.09                                                  | 4,966                                                | 1.53 1.40                                              | 710064                                                    | 77 +0.56 +                                            |
| 100            | 1.81                                                  | 8,015                                                | 1.73 2,14                                              |                                                           | 72 -0.08 +                                            |

The project will incorporate the use of a subsurface basin to store the volume difference between the pre-and post-developed 25-year storm event. Table 2 below summarizes the volume difference between the pre- and post-developed 25 year storm event.

## TABLE 2 – PRE-DEVELOPED VS. POST-DEVELOPED 25-YEAR STORM RUNOFF VOLUME DIFFERENCE

| Storm<br>Event | Pre-Developed<br>Total Site Runoff Volume<br>(cf) | Post-Developed<br>Total Site Runoff Volume<br>(cf) | Volume Increase<br>From Pre-Developed<br>(cf) |
|----------------|---------------------------------------------------|----------------------------------------------------|-----------------------------------------------|
| 25             | 4,966                                             | 2,100 6477                                         | 2.134 1 5                                     |

The subsurface basin consists of fourteen (14) rows of 18" HDPE pipe, this will provide a storage volume of 2,170 CF (excluding stone voids). See Appendix B for subsurface basin sizing worksheet.

# 8.0 STORM SEWER DESIGN

The runoff from the site drains to an existing stormwater inlet located approximately 170' south on within Haddon Street.

# 9.0 SOIL EROSION AND SEDIMENT CONTROL

The project will comply with the minimum design and performance standards for erosion control established under the Soil Erosion and Sediment Control Act, N.J.S.A. 4:24-39 et seq. and implementing rules. Anticipated erosion control measures to be included in the Soil Erosion and Sediment Control Plan will likely include: minimizing the area of disturbance, placement of silt fencing around the limit of disturbance and a stabilized construction entrance (see Dwg. CS8001). The project will be submitted to the Camden County Conservation District for certification of a Soil Erosion and Sediment Control Plan prior to commencement of construction.

## 10.0 CONCLUSION

As described above, the proposed project will generate a minimal increase in the total runoff leaving the site for the 2 and 10-year storm events and provide a reduction in the 100-year storm runoff rate. The project is not considered a "major development" as the project will not disturb more than one (1) acre of land and the project will not increase impervious area by 0.25 acres. Therefore, the project is not required to address groundwater recharge, water quantity and water quality requirements of N.J.A.C. 7:8-5.4 and 7:8-5.5. The project has incorporated a subsurface basin to store the volume difference between the pre-and post-developed 25-year storm event.

HEE

Subsection: Master Network Summary

#### **Catchments Summary**

| Label      | Scenario | Return<br>Event<br>(years) | Hydrograph<br>Volume<br>(ft³) | Time to Peak<br>(hours) | Peak Flow<br>(ft³/s) |
|------------|----------|----------------------------|-------------------------------|-------------------------|----------------------|
| EDA-1 perv | 2 year   | 2                          | 638.000                       | 12.150                  | 0.10                 |
| EDA-1 perv | 10 year  | 10                         | 1,832.000                     | 12.150                  | 0.41                 |
| EDA-1 perv | 25year   | 25                         | 2,791.000                     | 12.150                  | 0.65                 |
| EDA-1 perv | 100 year | 100                        | 5,005.000                     | 12.150                  | 1.20                 |
| EDA-1 Imp  | 2 year   | 2                          | 1,116.000                     | 12.100                  | 0.24                 |
| EDA-1 Imp  | 10 year  | 10                         | 1,749.000                     | 12.100                  | 0.37                 |
| EDA-1 Imp  | 25year   | 25                         | 2,161.000                     | 12.100                  | 0.46                 |
| EDA-1 Imp  | 100 year | 100                        | 2,998.000                     | 12.100                  | 0.63                 |

#### **Node Summary**

| Label | Scenario | Return<br>Event<br>(years) | Hydrograph<br>Volume<br>(ft³) | Time to Peak<br>(hours) | Peak Flow<br>(ft³/s) |
|-------|----------|----------------------------|-------------------------------|-------------------------|----------------------|
| POI-1 | 2 year   | 2                          | 1,753.000                     | 12.150                  | 0.34                 |
| POI-1 | 10 year  | 10                         | 3,580.000                     | 12.150                  | 0.77                 |
| POI-1 | 25year   | 25                         | 4,952.000                     | 12.150                  | 1.09                 |
| POI-1 | 100 year | 100                        | 8,003.000                     | 12.100                  | 1.81                 |

pre developed.ppc 8/30/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 08795 USA +1-203-755-1886

Bentley PondPack V8 [08.11.01.58] Page 1 of 1

POST

Subsection: Master Network Summary

#### **Catchments Summary**

| Label         | Scenarlo | Return<br>Event<br>(years) | Hydrograph<br>Volume<br>(ft <sup>3</sup> ) | Time to Peak<br>(hours) | Peak Flow<br>(ft³/s) |
|---------------|----------|----------------------------|--------------------------------------------|-------------------------|----------------------|
| PDA-1 perv    | 2 year   | 2                          | 443.000                                    | 12.150                  | 0.07                 |
| PDA-1 perv    | 10 year  | 10                         | 1,272.000                                  | 12.150                  | 0.28                 |
| PDA-1 perv    | 25 year  | 25                         | 1,938.000                                  | 12.150                  | 0.45                 |
| PDA-1 perv    | 100 year | 100                        | 3,476.000                                  | 12.150                  | 0.83                 |
| PDA-1 Imp     | 2 year   | 2                          | 1,227.000                                  | 12.100                  | 0.27                 |
| PDA-1 Imp     | 10 year  | 10                         | 1,923.000                                  | 12.100                  | 0.41                 |
| PDA-1 Imp     | 25 year  | 25                         | 2,377.000                                  | 12.100                  | 0.50                 |
| PDA-1 Imp     | 100 year | 100                        | 3,298.000                                  | 12.100                  | 0. <del>69</del>     |
| proposed roof | 2 year   | 2                          | 1,116.000                                  | 12.100                  | 0.24                 |
| proposed roof | 10 year  | 10                         | 1,749.000                                  | 12.100                  | 0.37                 |
| proposed roof | 25 year  | 25                         | 2,161.000                                  | 12.100                  | 0.46                 |
| proposed roof | 100 year | 100                        | 2,998.000                                  | 12.100                  | 0.63                 |

#### **Node Summary**

| Label | Scenario | Return<br>Event<br>(years) | Hydrograph<br>Volume<br>(ft³) | Time to Peak<br>(hours) | Peak Flow<br>(ft³/s) |
|-------|----------|----------------------------|-------------------------------|-------------------------|----------------------|
| POI-1 | 2 year   | 2                          | 2,786.000                     | 12.100                  | 0.57                 |
| POI-1 | 10 year  | 10                         | 4,944.000                     | 12.100                  | 1.05                 |
| POI-1 | 25 year  | 25                         | 6,477.000                     | 12.100                  | 1.40                 |
| POI-1 | 100 year | 100                        | 9,772.000                     | 12.100                  | 2.14                 |

no basin revised parking layout.ppc 8/30/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Slemon Company Drive Suite 200 W Waterlown, CT 05795 USA +1-203-765-1869

Bentley PondPack V8I [08.14.01.58] Page 1 of 1

| U | Ő   |
|---|-----|
| F |     |
| M | ιΨ. |
|   | E   |

STORMWATER RETENTION / DETENTION

PIPE SYSTEM SIZING WORKSHEET

| THE NOST /                        | ADVANCED                | HE MOST ADVANCED NAME IN DRAINAGE                | DRAINAGE     | <b>SYSTEMS</b>      | Ø        |                    |                          |                                |                      |                  |                    |                                                              |          |  |
|-----------------------------------|-------------------------|--------------------------------------------------|--------------|---------------------|----------|--------------------|--------------------------|--------------------------------|----------------------|------------------|--------------------|--------------------------------------------------------------|----------|--|
| - 202                             |                         |                                                  |              |                     |          |                    |                          | Pro                            | Project Name:        | Haddo            | on Heights Ar      | Haddon Heights Apartment Complex                             | Hex      |  |
| Enter or Select                   | values in the           | Enter or Select values in the Yellow fields ONLY | ONLY         | 8                   |          |                    |                          | Location (City, State):        | City, State):        | Ï                | addon Height       | Haddon Heiohts New Jersev                                    |          |  |
| ALC: NO                           | P. North La             | UNITS                                            |              | A STATE OF          | 1000     |                    |                          | - Dro                          | Prenamed Enr         |                  |                    |                                                              |          |  |
| Unit of Measure                   | easure                  | C Imperial (R. in) C Metric                      | t, in) C Met | bic (mm, m)         |          |                    |                          |                                |                      |                  |                    |                                                              |          |  |
| A THE OWNER                       | - William               | SYSTEM                                           | 1. 112       | A COLORED           | 1        |                    |                          |                                | uate rispared.       |                  | ľ                  |                                                              |          |  |
| Joint Type                        | Type                    | Plain End ST                                     | 51           | -                   | T        |                    |                          |                                | cingmeer             |                  |                    |                                                              |          |  |
| Decim Story                       | and Values              |                                                  | 2            | 1                   | -        |                    |                          |                                | Contractor           |                  |                    |                                                              |          |  |
| amuna anuage volume               | ige volume              |                                                  | 5            |                     |          |                    |                          | Regional                       | Regional Engineer:   |                  |                    |                                                              |          |  |
| Average Cover Height <sup>4</sup> | ver Height <sup>4</sup> | 1.50                                             | F            |                     |          |                    | Are:                     | Area Sales Representative:     | esentative:          |                  |                    |                                                              |          |  |
|                                   |                         |                                                  |              |                     |          |                    |                          | Surface A                      | Surface Application: |                  |                    |                                                              |          |  |
|                                   |                         |                                                  |              |                     |          |                    |                          |                                |                      |                  |                    |                                                              |          |  |
| 東京の                               | HEADER                  | Sam Solution                                     | 1000         | and and and         |          | LATERALS           | Contraction of the       | のため                            | Nue - Mar            | 「ないない            | BACKENI            | THE                                                          | 12 52    |  |
| Hander Dismater                   |                         | ę                                                |              | Lateral<br>Diameter | Lateral  | Number of          | # of Sticks<br>/ Lateral | Approx. Length<br>of End Stick | ength<br>Thick       |                  |                    |                                                              |          |  |
|                                   |                         | •                                                |              | (iii)               | £        | Laterals           |                          |                                |                      | Stone Porosity?  | rosity?            | 0                                                            | *        |  |
| Number of Headers                 | Headers                 | •                                                | Group 1      | 18                  | 82       | 14                 | 5                        | 4-ft                           |                      | "Enter "0" to r  | not include the b  | "Enter "0" to not include the backfill in the storage volume | e volume |  |
| Perforate Headers?                | leaders?                | Yes                                              | Group 2      | 18                  | 0        | 0                  | 0                        | 0-R                            |                      |                  |                    |                                                              |          |  |
| Include Header(s) in              | ader(s) in              | Yes +                                            | Group 3      | 18                  | 0        | 0                  | 0                        | 0-ft                           |                      | Additional Stone | Il Stone           |                                                              |          |  |
|                                   |                         |                                                  |              |                     |          |                    |                          |                                |                      | Storage (ASV)?   |                    | 9                                                            |          |  |
|                                   | 5                       |                                                  |              | Perforate Laterals? | 1        | Yes -              |                          |                                |                      |                  |                    |                                                              | (        |  |
|                                   |                         |                                                  |              |                     |          |                    |                          |                                |                      |                  |                    |                                                              |          |  |
|                                   | and the second          | STORAGE VOLUME                                   | VOLUME       | 10 m                | APPROXIM | APPROXIMATE SYSTEM | Service and              | 1                              | NAL - CAL            | DICAVATION       |                    | STRUCT SAL                                                   |          |  |
|                                   |                         | COMPONENT                                        |              | Total               | S        | SIZE               | Pine                     |                                |                      | Disturbed        | Freak              | Ectimated                                                    |          |  |
|                                   | Product                 | Stone                                            | ASV          | System              | Width    | Length             | Diameter                 | Width                          | Length               | Surface          | ation <sup>2</sup> | Backfill                                                     | ASV      |  |
|                                   | (CF)                    | (CF)                                             | (CF)         | (CF)                | (FT)     | (FT)               | N                        | (FT)                           | (FT)                 | (aks)            | (CAD)              | (CVD)                                                        | (CAD)    |  |
| Group 1                           | 2,170                   | 0                                                | 0            | 2,170               | 40       | 87                 | 18                       | 42                             | 68                   | 415              | 498                | 418                                                          | 69       |  |
| Group 2                           | 0                       | 0                                                | 0            | 0                   | 0        | 0                  | 8;                       | 0                              | D                    | 0                | 0                  | 0                                                            | 0        |  |
| Group 3                           |                         | 0                                                | 0            | 0                   | 7        | 0                  | 18                       | 0                              | 0                    | 0                | 0                  | c                                                            | 0        |  |

NOTES

1 - Full Stick: Assumed a standard lay length of 19-8"

2,170

TOTALS

7% of the require 2,170.08

59

418

85

415

bedding depth. Estimated volumes assume a flat system based on the user-2 - Excavation: Based on manufacturer's recommended trench width and entered Average Cover Height.

3 - Backfill: Does not account for pipe corrugations - calculated for conservative quanitites. Not for use with take offs or ordening purposes.

diameters 12-36", 2-ft for 42-60". Maximum cover shall not exceed 8-ft without 4 - Cover Height: For traffic installations, 1-ft of minimum cover is required for consulting Applications Engineering.

between A and H profile connections. Determined on a project-specific basis. 6 - Quantities: Assumes all Groups are same diameter. Run separate calculations to determine quantities and costs for different Group diameters. 5 - Bill of Materials: Does not differentiate between ST and WT fittings or

assist the design engineer in sizing stormwater management systems using ADS pipe and manifold components. As with any calculation aid, this tool should be used for estimating only, the engineer must verify the assumptions and methods to ensure they satisfy the project and local design This Excel spreadsheet is provided for rough estimating purposes only. This tool is intended to criteria.

S 

NUN N

STORMWATER RETENTION / DETENTION **PIPE SYSTEM SIZING WORKSHEET** 

| THE MOST ADVANCED NAME IN DRAINAGE               |                                 | SYSTEMS                     |                           | •                     |                          |                                |                                           |
|--------------------------------------------------|---------------------------------|-----------------------------|---------------------------|-----------------------|--------------------------|--------------------------------|-------------------------------------------|
| Version 7.9                                      |                                 |                             |                           |                       |                          | Project Name:                  | Haddon Heights Apartment Complex          |
| Enter or Select values in the Yellow fields ONLY | S ONLY                          |                             |                           |                       |                          | Location (City, State):        | Haddon Heights, NJ                        |
| NITS                                             | A SAN AND                       |                             |                           |                       |                          | Prepared For:                  | 10                                        |
| Unit of Measure 6 Imperial (                     | © Imperial (ft, in) C Metric (m | (mm, m)                     |                           |                       |                          | Date Prepared:                 | 8/30/2018                                 |
| SYSTEM                                           |                                 |                             |                           |                       |                          | Engineer:                      | JR/BM                                     |
| Joint Type Plain End ST                          | ST +                            |                             |                           |                       |                          | Contractor                     |                                           |
| Design Storage Volume 1511                       | CF<br>L                         |                             |                           |                       |                          | Regional Engineer:             |                                           |
| Average Cover Height <sup>4</sup> 1.50           | E E                             |                             |                           |                       | Area                     | Area Sales Representative:     |                                           |
|                                                  |                                 |                             |                           |                       |                          | Surface Application:           |                                           |
| HEADER                                           |                                 | 101 A                       |                           | LATERALS              | Sec. No.                 |                                | BACKFILL                                  |
| Header Diameter                                  | Dia                             | Lateral<br>Diameter<br>(in) | Lateral<br>Length<br>(ft) | Number of<br>Laterals | # of Sticks<br>/ Lateral | Approx. Length<br>of End Stick | A non-perforated system has been selected |
| Number of Headers 2 +                            | Group 1 18                      | •                           | 22                        | 12                    | 4                        | 11.7-A                         |                                           |
| Perforate Headers? No 🗸                          | Group 2 18                      | •                           |                           |                       | 0                        | 6A                             | -                                         |
| Include Header(s) in Yes  Storage Volume?        | Group 3 18                      | -                           |                           | 0                     | 0                        | 0-fl                           |                                           |
|                                                  | Perf                            | Perforate Laterals?         | 1                         | No v                  |                          |                                | ÷                                         |
|                                                  |                                 |                             |                           |                       |                          |                                |                                           |
| STORAG                                           | STORAGE VOLUME                  |                             | APPROXIMI                 | APPROXIMATE SYSTEM    |                          |                                | EXCAVATION                                |

|         | The second se | Jouro in  | AULOWE | A LOUIS AND | AFFROMIN | ALE STOLEM |          | No. of the other | THE PARTY OF THE P | EXCAVATION      | A NOT A            | THE PARTY OF THE P |       |
|---------|-----------------------------------------------------------------------------------------------------------------|-----------|--------|-------------------------------------------------|----------|------------|----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|         |                                                                                                                 | COMPONENT |        | Total                                           | SI       | SIZE       | Dine     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Disturbed       | Freak              | Echimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|         | Product<br>Volume                                                                                               | Stone     | ASV    | System                                          | Width    | Length     | Diameter | Width            | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface<br>Area | ation <sup>2</sup> | Backfill <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ASV   |
|         | (CF)                                                                                                            | (CF)      | (CF)   | (CF)                                            | (FT)     | (FT)       | (N)      | E                | (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ays)           | (CAD)              | (CAD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (CXD) |
| Group 1 | 1,605                                                                                                           | 0         | 0      | 1,605                                           | 34       | 75         | 18       | 36               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 309             | 371                | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0     |
| Group 2 | 0                                                                                                               | 0         | 0      | 0                                               | 0        | 0          | 18       | 0                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0               | 0                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     |
| Group 3 | 0                                                                                                               | 0         | 0      | 0                                               | 0        | 0          | 18       | 0                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0               | 0                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     |
| TOTALS  | 1,605                                                                                                           | 0         | 0      | 1,605.00                                        |          |            |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 309             | 371                | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0     |

NOTES

2 - Excavation: Based on manufacturer's recommended trench width and I - Full Stick: Assumed a standard lay length of 19'-8".

bedding depth. Estimated volumes assume a flat system based on the userentered Average Cover Height.

3 - Backfill: Does not account for pipe corrugations - calculated for conservative quanitites. Not for use with take-offs or ordening purposes.

diameters 12-36", 2-ft for 42-60". Maximum cover shall not exceed 8-ft without 4 - Cover Height: For traffic installations, 1-ft of minimum cover is required for consulting Applications Engineering.

between A and H profile connections. Determined on a project-specific basis. calculations to determine quantities and costs for different Group diameters. 5 - Bill of Materials: Does not differentiate between ST and WT fittings or 6 - Quantities: Assumes all Groups are same diameter. Run separate

assist the design engineer in sizing stormwater management systems using ADS pipe and manifold components. As with any calculation aid, this tool should be used for estimating only; the engineer must verify the assumptions and methods to ensure they satisfy the project and local design This Excel spreadsheet isprovided for rough estimating purposes only. This tool is intended to criteria.



Soils Information

*írvíng desígn group, llc* 10 White Horse Pike & Haddon Heights, NJ 08035 & Phone 856-310-9200

2 Aquarium Drive Suite 320 Camden, NJ 08103 T: 856-668-8600 F: 856-668-8610

www.pennoni.com

# SOIL PERMEABILITY

# STORMWATER BASIN SOIL BORING LOG

# HADDON HEIGHTS APARMENT COMPLEX 414 WHITE HORSE PIKE BLOCK 37, LOT 8 HADDON HEIGHTS CAMDEN COUNTY, NEW JERSEY



# **Prepared For:**

UNA VOCE 417 White Horse Pike Suite E Haddon Heights, New Jersey 08035

# **Prepared By:**

RWD Consultants A Division of Pennoni 2 Aquarium Drive, Suite 320 Camden, New Jersey 08103 T: 856-668-8600

Joseph Raday, PE New Jersey License No. 24GE043768

November 24, 2017

Proj. No. UNAV1701

## TABLE OF CONTENTS

| 1.0 INTRODUCTION            | 1 |
|-----------------------------|---|
| 2.0 PROJECT DESCRIPTION     | 1 |
| 2.1 Existing Conditions     | 1 |
| 2.2 Proposed Conditions     | 1 |
| 2.3 Soil Survey Information | 1 |
| 3.0 Site Visit Information  | 2 |
| 4.0 Conclusion / Findings   | 2 |

## EXHIBITS

FIGURE 1 – SOIL MAP

FIGURE 2 - SOIL BORING LOG

FIGURE 3 – DOUBLE RING FIELD DATA SHEET

## SOIL PERMEABILITY TEST SUMMARY

## 1.0 INTRODUCTION

**UNA Voce (Applicant)**, is proposing to construct an apartment building located at the intersection of White Horse Pike (NJSH Rt. 30) and Haddon Street in the Borough of Haddon Heights, Camden County, New Jersey. The project entails the construction of a 2,698 sf apartment complex, 12 proposed parking spaces, lighting and landscaping.

This report has been prepared to accompany the preliminary/final minor site plan application for the project.

## 2.0 PROJECT DESCRIPTION

## 2.1 Existing Conditions

The project is in Haddon Heights, New Jersey, at the intersection of the White Horse Pike (NJSH Rt. 30) and Haddon Street. The subject property is located on a parcel identified as Block 81.05, Lot 1.

The existing site generally consists of three (3) space paved parking area and an existing 2 ½ story home. The surface coverage consists of 0.10 acres of existing impervious surfaces and 0.36 acres of existing pervious surfaces. The "site" is defined as the tax map property boundaries. For existing condition runoff calculations, the "site" was analyzed as one Existing Drainage Area (EDA-1).

The stormwater from the site collectively drains towards an existing inlet and storm conveyance system located approximately 170' south on Haddon Street.

## 2.2 Proposed Conditions

The proposed project consists of an existing 2 ½ story home, 15-space parking area (total), a proposed 2,698 sf apartment building, lighting and landscaping. The proposed surface coverage consists of 0.26 acres of impervious surfaces and 0.20 acres of pervious surfaces. The proposed conditions will **not** increase impervious surface coverage by more than 0.25 acres. For proposed condition runoff calculations, the site was analyzed as one Proposed Drainage Area (PDA-1).

## 2.3 Soil Survey Information

A review of soil information provided in the USDA Web Soil Survey Map Database Report for Camden County indicates that the soils on the subject property consist of Freehold-Downer-Urban Land complex (FrpB) (Figure 1).

#### 3.0 SITE VISIT INFORMATION

On November 16, 2017; Pennoni conducted one Test Pit (TP-1) onsite and tested soil permeability utilizing the Double Ring infiltrometer method (ASTM D 3385) field test. This test was completed by Josh Holderer of Pennoni. Soil Boring Log information was completed by Larissa Elder of Pennoni. The site did not show signs of previous soil disturbance in the area of testing. The weather was partly cloudy at the time of soil testing. Soil Permeability testing was conducted at approximately 6ft (72 inches).

## 4.0 CONCLUSION / FINDINGS

USDS Soil Maps showed the area of the subject property to contain Freehold-Downer-Urban Land complex (FrpB) soil type. This soil type is considered to be Well Drained. Soil Boring Logs from the site visit on November 16, 2017 by Pennoni show the soil to contain layers of mostly silty loam with some clay layers present. The Soil Boring Log is provided as Figure 2.

During the excavation, no water table or seasonal high water table was encountered. Most of the soil layers observed were dry or slightly damp.

Soil permeability testing resulted in an Infiltration Rate of 0.56cm/hr or 0.22in/hr. The Double Ring Field Data Sheet is provides in Figure 3.

Figure 1:

Soil Map



USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

| MAP L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EGEND                                                                                                                                                                                                                                                                                       | MAP INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area of Interest (AOI)         Image: Area of Interest (AOI)         Soils         Image: Soil Map Unit Polygons         < | EGEND<br>Spoil Area<br>Stony Spot<br>Stony Spot<br>Very Stony Spot<br>Very Stony Spot<br>Very Stony Spot<br>Very Stony Spot<br>Very Stony Spot<br>Very Stony Spot<br>Special Line Features<br>Streams and Canals<br>Transportatures<br>Nationals<br>Nationals<br>Local Roads<br>Local Roads | <b>MAP INFORMATION</b> The soil surveys that comprise your AOI were mapped at 1:12,000.         Warning: Soil Map may not be valid at this scale.         Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.         Please rely on the bar scale on each map sheet for map measurements.         Source of Map: Natural Resources Conservation Service Web Soil Survey URL:         Coordinate System: Web Mercator (EPSG:3857)         Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. |
| <ul> <li>Marsh or swamp</li> <li>Mine or Quarry</li> <li>Miscellaneous Water</li> <li>Perennial Water</li> <li>Rock Outcrop</li> <li>Saline Spot</li> <li>Sandy Spot</li> <li>Severely Eroded Spot</li> <li>Sinkhole</li> <li>Slide or Slip</li> <li>Sodic Spot</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aerial Photography                                                                                                                                                                                                                                                                          | <ul> <li>This product is generated from the USDA-NRCS certified data a of the version date(s) listed below.</li> <li>Soil Survey Area: Camden County, New Jersey Survey Area Data: Version 10, Sep 28, 2016</li> <li>Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.</li> <li>Date(s) aerial images were photographed: Jun 15, 2014—Jun 24, 2014</li> <li>The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.</li> </ul>                                                                                                                                                                                                                                                                                                                    |



# Map Unit Legend

| Camden County, New Jersey (NJ007) |                                                                 |              |                |  |  |  |  |
|-----------------------------------|-----------------------------------------------------------------|--------------|----------------|--|--|--|--|
| Map Unit Symbol                   | Map Unit Name                                                   | Acres in AOI | Percent of AOI |  |  |  |  |
| FrpB                              | Freehold-Downer-Urban land<br>complex, 0 to 5 percent<br>slopes | 0.5          | 100.0%         |  |  |  |  |
| Totals for Area of Interest       |                                                                 | 0.5          | 100.0%         |  |  |  |  |



Figure 2:

Soil Boring Log

# SOIL BORING LOG

| Project Site:                                                                                                                                                                                                                                                     | Haddon Heights Apa    | Haddon Heights Apartment Complex |    |   |               |         | 11-16-2017             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|----|---|---------------|---------|------------------------|
| Applicant/Owner:                                                                                                                                                                                                                                                  | UNA VOCE              |                                  |    |   |               | County: | Camden County          |
| Investigator(s):                                                                                                                                                                                                                                                  | Larissa Elder and Jos | h Holderer                       |    |   |               | State:  | New Jersey             |
| Do normal conditions                                                                                                                                                                                                                                              | s exist on the site?  | Yes                              | No | Х | Community ID: |         |                        |
| Is the site significantly                                                                                                                                                                                                                                         | disturbed?            | Yes                              | No | Х | Transect ID:  | TP-1    |                        |
| Is the area a potential                                                                                                                                                                                                                                           | Problem Area?         |                                  |    |   |               |         |                        |
| <u>Remarks</u> :                                                                                                                                                                                                                                                  |                       |                                  |    |   |               |         |                        |
| Basin Soil Boring #1                                                                                                                                                                                                                                              |                       |                                  |    |   |               |         |                        |
| Basin Soil Boring #1<br>Soil Sample taken at 72" (6ft)<br>The soil boring was conducting in an area that currently was a maintained lawn area. The site did not appear to have been disturbed. N<br>evidence of lower layer disturbance was found or anticipated. |                       |                                  |    |   |               |         | ave been disturbed. No |

# SOILS

| Soil Serie                                             | s and Phase  | : Fr        | Freehold-Downer-Urban land (0 to 5 percent slopes) - FrpB |          |        |          |                 |                                                       |  |
|--------------------------------------------------------|--------------|-------------|-----------------------------------------------------------|----------|--------|----------|-----------------|-------------------------------------------------------|--|
| Soil Drain                                             | nage Class:  | W           | Well drained                                              |          |        |          |                 |                                                       |  |
| Taxonom                                                | y (Subgrou   | p):         |                                                           |          |        |          |                 |                                                       |  |
| Field Observations Confirm Mapped Type? Yes X No       |              |             |                                                           |          |        |          |                 |                                                       |  |
|                                                        |              |             |                                                           |          |        |          |                 |                                                       |  |
|                                                        | s and Phase  | :           |                                                           |          |        |          |                 |                                                       |  |
|                                                        | nage Class:  |             |                                                           |          |        |          |                 |                                                       |  |
|                                                        | ıy (Subgrouj |             |                                                           |          |        |          | <u> </u>        |                                                       |  |
| Field Obs                                              | servations C | Confirm M   | lapped Typ                                                | pe?      | Yes    |          | No              |                                                       |  |
|                                                        |              |             |                                                           |          |        |          |                 |                                                       |  |
|                                                        |              |             |                                                           |          | Soi    | l Profil | e Description   |                                                       |  |
| Depth                                                  |              | Matrix      | x Color                                                   | Mottle ( | Colors |          | Mottle          |                                                       |  |
| (inches)                                               | Horizon      |             | ll Moist)                                                 | (Munsell |        | Abur     | ndance/Contrast | Textures, Concretions, Structures, etc.               |  |
| 0-12                                                   |              | Topsoil     |                                                           |          |        |          |                 | Dark grayish brown / Dry                              |  |
|                                                        |              | 10YR 4/     |                                                           |          |        |          |                 |                                                       |  |
| 12-36                                                  |              | 10YR 7/     | /6                                                        |          |        |          |                 | Yellow/ Silty Loam / Dry                              |  |
|                                                        |              |             | 1.                                                        |          |        |          |                 |                                                       |  |
| 36-48                                                  |              | 10YR 7/     | /2                                                        | 10YR 6/4 |        |          |                 | Light Grey with slight light yellowish brown mottles/ |  |
| 10.01                                                  |              |             | . / 0                                                     |          |        |          |                 | Clay / Dry                                            |  |
| 48-84                                                  |              | 7.5YR 7     | //8                                                       |          |        |          |                 | Redish Yellow/ Sandy Loam with some Medium Size       |  |
|                                                        |              |             |                                                           |          |        |          |                 | Pebbles present / Dry                                 |  |
| 84-108                                                 |              | 10YR 5/     | /3                                                        |          |        |          |                 | Brown / Silty Clay / Slightly Damp                    |  |
|                                                        |              |             |                                                           |          |        |          |                 |                                                       |  |
| 108-144                                                |              | GLEY 2      | 2 3/5B                                                    |          |        |          |                 | Very Dark Bluish Gray / Clay / Slightly Damp          |  |
|                                                        |              |             |                                                           |          |        |          |                 |                                                       |  |
|                                                        |              |             |                                                           |          |        |          |                 |                                                       |  |
|                                                        |              |             |                                                           |          |        |          |                 |                                                       |  |
|                                                        |              | <b>T</b> '  | 11.01                                                     |          |        |          |                 |                                                       |  |
| Field Observations Seasonal High Water Table (inches): |              |             |                                                           | NEVE     | DEAC   | LIED     |                 |                                                       |  |
|                                                        | U U          | ``          | ,                                                         |          | NEVER  |          |                 |                                                       |  |
| 1                                                      | Free-Stand   | 0           | ,                                                         | hes):    | NEVER  |          |                 |                                                       |  |
| Depth to                                               | Saturated S  | oil (inches | s):                                                       |          | NEVER  | R REAC   | HED             |                                                       |  |
|                                                        |              |             |                                                           |          |        |          |                 |                                                       |  |

Figure 3:

Double Ring Field Data Sheet

Pennoni

Project Identification: <u>UNAV1701</u> Test Location: <u>TP-1</u> Liquid Used: <u>Mun. Water</u> pH: ~ 7.0 Tested By: <u>JWH</u> Depth to Water Table: <u>Not Encountered</u>

| Constraints  | Area (sq. cm) | Depth of Liquid (cm) | Liquid No. | Containers (cm <sup>3</sup> /cm) |
|--------------|---------------|----------------------|------------|----------------------------------|
| Inner Ring   | 729.3         | 7.6                  |            | 182.32                           |
| Annular Spac | 2,188         | 7.6                  |            | 182.32                           |

Liquid level maintained using: X Flow Valve; 

Float Valve; 
Mariotte Tube

Penetration of Rings: Inner <u>5.1</u> (cm); Outer <u>10.2</u> (cm )

|        |            |            | Elar    | Flammed             |                 | Flow Readings              |                 |               | Increr  | mental           | Ground Temp = <u>61°F</u> |                           |
|--------|------------|------------|---------|---------------------|-----------------|----------------------------|-----------------|---------------|---------|------------------|---------------------------|---------------------------|
| Trial  | Start/ End | Date       | Time    | Elapsed<br>Time     | Inner           | Ring                       | Annula          | r Space       | Liquid  | Infiltio         | on Rate                   | Depth of <u>6.0 ft</u>    |
| Number |            | Date       | (hh:mm) | ∆/(total)<br>(mins) | Reading<br>(cm) | Flow<br>(cm <sup>3</sup> ) | Reading<br>(cm) | Flow<br>(cm³) | Temp °F | Inner<br>(cm/hr) | Annular<br>(cm/hr)        | Remarks: Weather,<br>etc. |
| 1      | S          | 11/27/2017 | 10:43   | 15                  | 30              | 117                        | 30.0            | 117           | 57      | 0.64             | 0.21                      | Dorthu elevelu            |
|        | E          | 11/27/2017 | 10:58   | (15)                | 29.36           | 117                        | 29.4            | 117           | 57      | 0.64             | 0.21                      | Partly cloudy             |
| 2      | S          | 11/27/2017 | 10:58   | 15                  | 29.36           | 117                        | 29.4            | 117           | 57      | 0.64             | 0.21                      |                           |
|        | E          | 11/27/2017 | 11:13   | (30)                | 28.72           | 117                        | 28.7            | 11/           | 57      | 0.04             | 0.21                      |                           |
| 3      | S          | 11/27/2017 | 11:13   | 15                  | 28.72           | 117                        | 28.7            | 117           | 57      | 0.64             | 0.21                      |                           |
|        | E          | 11/27/2017 | 11:28   | (45)                | 28.08           | 117                        | 28.1            | 8.1           | 57      | 0.04             | 0.21                      |                           |
| 4      | S          | 11/27/2017 | 11:28   | 15                  | 28.08           | 117                        | 28.1            | 117           | 57      | 0.64             | 0.21                      |                           |
|        | E          | 11/27/2017 | 11:43   | (60)                | 27.44           | 11/                        | 27.4            | 11/           | 57      | 0.04             | 0.21                      |                           |
| 5      | S          | 11/27/2017 | 11:43   | 30                  | 27.44           | 233                        | 27.4            | 226           | 57      | 0.64             | 0.21                      |                           |
|        | E          | 11/27/2017 | 12:13   | (90)                | 26.16           | 200                        | 26.2            | 220           | 57      | 0.04             | 0.21                      |                           |
| 6      | S          | 11/27/2017 | 12:13   | 30                  | 26.16           | 233                        | 26.2            | 226           | 57      | 0.64             | 0.21                      |                           |
| Ū      | E          | 11/27/2017 | 12:43   | (120)               | 24.88           | 235                        | 25.0            | 220           | 57      | 0.04             | 0.21                      |                           |
| 7      | S          | 11/27/2017 | 12:43   | 60                  | 24.88           | 407                        | 24.9            | 365           | 57      | 0.56             | 0.17                      |                           |
|        | E          | 11/27/2017 | 13:43   | (180)               | 22.65           | 407                        | 22.9            | 505           | 57      | 0.50             | 0.17                      |                           |
| 8      | S          | 11/27/2017 | 13:43   | 60                  | 22.65           | 407                        | 22.9            | 361           | 57      | 0.56             | 0.17                      |                           |
|        | E          | 11/27/2017 | 14:43   | (240)               | 20.42           | 407                        | 20.9            | 201           | 57      | 0.56             | 0.17                      |                           |

Infiltration Rate 0.56 cm/hr or 0.22 in./hr



| CLIENT: Herman's Trucking<br>181 Jacobstown-Cookstown Road | DATE: 3/10/23      |
|------------------------------------------------------------|--------------------|
| Wrightstown, New Jersey 08562                              | LAB NO.: B-807-23  |
| PROJECT: Quality Control                                   | REPORT NO.: AG-5   |
| ON SAMPLE OF: Soil Material                                | SAMPLED BY: Client |
| RECEIVED: 2/23/23                                          | Revised: 6/30/23   |
| MARKED: Bioretention Soil                                  |                    |

EXAMINED WITH THE FOLLOWING RESULTS:

1. Hydrometer Analysis (ASTM D422) with Grain Size Analysis

| Sieve Size<br>3/4**<br>3/8**<br>#4<br>#10<br>#40<br>#60<br>#100<br>#200<br>#270                      | <u>% Passing</u><br>100<br>100<br>96.8<br>92.1<br>52.6<br>30.2<br>19.6<br>8.8<br>8.4 | % Gravel:<br>% Sand (2.00 to 0.050mm)<br>% Silt (0.050 to 0.005 mm)<br>% Clay (0.005 to smaller):<br>% Fine:<br>% Very Fine:<br>% Fine & Very Fine: | ): 6.1 | -<br>85-95<br>5-8<br>2-5<br>-<br>-<br><25% |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------|
| <ol> <li>pH Value (ASTM D4972):</li> <li>% Organics (ASTM D2974):</li> <li>Soluble Salts:</li> </ol> | 5.8<br>6.8<br>2.10 ppm                                                               | 5.5-6.5<br>3.0-7.0<br>≤ 500ppm                                                                                                                      |        |                                            |

Respectfully Submitted, Certified Testing Laboratories, Inc.

Terry Kifer General Manager

TK/Kd

All reports are the confidential property of clients, and information contained may not be published or reproduced, pending our written approval. 155 US Route 130 • Bordentown, NJ 08505 • Phone (609) 298-3255 • Fax (609) 298-7288

#### UNDERWOOD ENGINEERING COMPANY 1 KEYSTONE AVENUE, SUITE 300 CHERRY HILL, NJ 08003

|                      |                                                    | 856-933-1818 |
|----------------------|----------------------------------------------------|--------------|
| Christopher T. Koss, | Fax 856-933-3123                                   |              |
| CLIENT:              | Una Voce                                           |              |
|                      | 315 4 <sup>th</sup> Avenue                         |              |
|                      | Haddon Heights, NJ 08035                           |              |
| PROJECT:             | 8 Unit Apartments                                  |              |
|                      | 414 White Horse Pike                               |              |
|                      | Haddon Heights, NJ                                 |              |
| <b>REQUIREMENT</b> : | Professional Engineering Services                  |              |
| LOCATION:            | Locations Provided by Client                       |              |
| DATE:                | 1/7/2024                                           |              |
| UE REF. NO.:         | 5198-20251-2 WO#24-0150                            |              |
| ATTENTION:           | Paul DeMartini email: <u>demartini80@yahoo.com</u> |              |
|                      |                                                    |              |

## **PURPOSE**

The purpose of this report is to present the findings of the continuous geotechnical soil boring and laboratory testing conducted at the 8 Unit Apartments project. The supplemental boring location was provided by the client.

## **INVESTIGATION**

<u>Geotechnical Boring – (TB-1)</u> One continuous geotechnical boring was completed at the stormwater basin location on December 26<sup>th</sup>, 2023. The test boring was carried out to a depth of approximately eighteen feet below ground surface (BGS). All standard penetration testing (SPT) and split-barrel sampling of soils was performed in accordance with ASTM D-1586.

The soils encountered at the boring location TB-1 consisted generally of very soft loams underlain by medium dense sandy loams and stiff to very stiff loams.

Groundwater was not encountered in TB-1. There were no seasonal high water indicators observed in the borehole.

Samples of the soils recovered during drilling operations were sealed in glass jars and transported to the Underwood Soil Laboratory for Hydrometer and Sieve analysis per ASTM D-422, and will be stored for a period of no less than 30 days.

| Test # | Test<br>Depth<br>(ft.) | Soil Description & Texture | Permeability Class Rating |
|--------|------------------------|----------------------------|---------------------------|
| TB-1A  | 4-6                    | SANDY LOAM                 | K3 (2 – 6 in/hr)          |
| TB-1B  | 6-8                    | LOAM                       | K2 (0.6 – 2.0 in/hr)      |
| TB-1C  | 8-10                   | LOAM                       | K2 (0.6 – 2.0 in/hr)      |

Results of permeability testing is contained in the table below:

\*Depths taken below existing ground surface elevations at test pit locations.

Note: It is anticipated that the field infiltration rates will be much slower than the laboratory rates due to the in place stiff consistency of the soils and the fine plus very fine sand contents (60-75%) of the soils.

## **QUALIFICATIONS**

Findings are based on the above investigation. No other conclusions are to be drawn other than those specifically stated. This report does not reflect any variations, which may be encountered during construction. Underwood Engineering Company will not be responsible for variations in subsurface soils encountered in areas other than those tested.

Respectfully submitted, UNDERWOOD ENGINEERING COMPANY

Christopher T. Sloss

Christopher T. Koss, P.E.



Kings Run at Haddon Heights

33

1a

Fran

Google Earth

414 White Horse Pike

Soon St

Glading Hill Memorials

10-march

Nicholas J Cinquino Ac

Billows Electric Supply

USZGZ CHESIEL

AND REAL

D Bank

#### CLIENT: Una Voce

**PROJECT: 8 Unit Apartments** 

## 414 White Horse Pike

Haddon Heights, NJ

GROUNDWATER DATA

≖

Hours After Completion

Groundwater Not Encountered

#### DATE: 12/26/2023

BORING No.: TB-1

DEPTH

NA

# UNDERWOOD ENGINEERING COMPANY

1 Keystone Avenue, Suite 300, Cherry Hill, NJ 08003

Ph.# 856.933.1818 Fx.# 856.933.3121

Christopher T. Koss, P.E.

## GROUND SURFACE ELEVATION: NA

| METHOD OF ADVANCING BORING    | DEPTH (FT.) |
|-------------------------------|-------------|
| CONTINUOUS SPLIT SPOON SAMPLE | 0 to 18 ft  |
| AUGERS                        | 10 to 16 ft |
| 2" O.D. SPLIT SPOON           | 16 to 18 ft |

| Depth (ft)<br>Groundwater<br>Sampling Interval<br>Sample #<br>Blows | N-Values<br>Lithology | Soil Description* | Notes: |
|---------------------------------------------------------------------|-----------------------|-------------------|--------|
|---------------------------------------------------------------------|-----------------------|-------------------|--------|

| 0    |             |            | Sand: Very Soft Brown LOAM                      |
|------|-------------|------------|-------------------------------------------------|
|      | S-1         | 0-0-0-1    |                                                 |
| _    | S-2         | 12-9-6-5   | Sand: Medium Dense Reddish Yellow<br>SANDY LOAM |
| 5—   | S-3         | 5-5-5-5    | Sand: Medium Dense Brown SANDY<br>LOAM          |
| _    | S-4         | 5-5-6-6    | Sand: Stiff-V.Stiff Pale Brown LOAM             |
|      | S-5         | 9-12-9-7   |                                                 |
| _    | <b>S-</b> 6 | 8-10-10-10 | Sand: V.Stiff Brown LOAM                        |
| -    | S-7         | 7-9-8-9    | Sand: V.Stiff Gray LOAM                         |
| 15 — | S-8         | 9-12-11-11 | Sand: V.Stiff Dark Gray LOAM                    |
|      | S-9         | 10-9-10-9  | Sand: V.Stiff Brown LOAM                        |

\*FIELD CLASSIFICATION ONLY. SOIL CLASSIFICATION FOR PARTICULAR USES SHOULD BE ASCERTAINED BY LABORATORY TESTS.

# **Underwood Engineering Company**

143 Harding Avenue • Bellmawr, New Jersey 08031

William R. Underwood, P.E., President

(856) 933-1818 • Fax (215) 259-2372

Client: Una Voce Project: 8 Unit Apartments Requirement: Hydrometer & Sieve Analysis Date Performed: 1/3/2024 Location: TB-1 at 4ft to 6ft Test Number: 1 Project No:

#### **ASTM D-422 HYDROMETER AND SIEVE ANALYSIS**

#### A. COARSE FRAGMENT CONTENT

Total dry sample wt. = 250.0 Wt. retained #10 sieve (2mm) = 6.4

% Coarse framents = 2.6

#### **B. HYDROMETER ANALYSIS**

Weight used for hydrometer analysis = 100.0g Percent Passing #10 sieve = 97.4Temperature =  $70 \text{ }^{\circ}\text{C}$ a = 1.0 based on specific gravity of soil particles = 2.65 from Table 1 of ASTM D-422

a = 1.0 based on specific gravity of soil particles = 2.05 from Table 1 of ASTM D-42

w, weight used for hydrometer analysis/percent passing  $\#10 \times 100 = 102.6$ 

L, value of effective depth, Table 2 of ASTM D-422 = see table below

k, based on specific gravity of soil particle and temperature = 0.01217

| Time, t   | Hydrometer | Percent in  | L (cm) | Soil particle diam.(mm),                                             |
|-----------|------------|-------------|--------|----------------------------------------------------------------------|
| (minutes) | reading, r | suspension, |        | $\mathbf{D} = \mathbf{k} \operatorname{sqrt}(\mathbf{L}/\mathbf{t})$ |
|           |            | P=100ra/w   |        |                                                                      |
| 2         | 38         | 37.0        | 11.4   | 0.02906                                                              |
| 5         | 35         | 34.1        | 11.4   | 0.01838                                                              |
| 15        | 30         | 29.2        | 11.4   | 0.01061                                                              |
| 30        | 27         | 26.3        | 11.9   | 0.00766                                                              |
| 60        | 20         | 19.5        | 13.0   | 0.00566                                                              |
| 250       | 19         | 18.5        | 13.2   | 0.00280                                                              |
| 1440      | 15         | 14.6        | 13.8   | 0.00119                                                              |

#### C. SIEVE ANALYSIS (of hydrometer sample)

Wt. passing #60 sieve (0.25mm) = 35.2 Wt retained #300 sieve (0.045mm) = 58.2

% Fine plus very fine sand = 60.5

#### **D. SOIL MORPHOLOGY**

Structure : Blocky

Consistence : Friable

**E. Soil Permeability CLASS RATING and TEXTURAL ANALYSIS** %Sand = 58.2 %Silt = 25.3 %Clay = 16.5

Soil Texture: SANDY LOAM Soil Permeability Class Rating: K3

# **Underwood Engineering Company**

143 Harding Avenue • Bellmawr, New Jersey 08031

William R. Underwood, P.E., President

(856) 933-1818 • Fax (215) 259-2372

Client: Una Voce Project: 8 Unit Apartments Requirement: Hydrometer & Sieve Analysis Date Performed: 1/3/2024 Location: TB-1 at 6ft to 8ft Test Number: 1 Project No:

#### **ASTM D-422 HYDROMETER AND SIEVE ANALYSIS**

#### A. COARSE FRAGMENT CONTENT

Total dry sample wt. = 250.0 Wt. retained #10 sieve (2mm) = 8.1

% Coarse framents = 3.2

#### **B. HYDROMETER ANALYSIS**

Weight used for hydrometer analysis = 100.0gPercent Passing #10 sieve = 96.8Temperature =  $70 \degree C$ 

a = 1.0 based on specific gravity of soil particles = 2.65 from Table 1 of ASTM D-422

w, weight used for hydrometer analysis/percent passing  $\#10 \ge 103.3$ 

L, value of effective depth, Table 2 of ASTM D-422 = see table below

k, based on specific gravity of soil particle and temperature = 0.01217

| Time, t   | Hydrometer | Percent in  | L (cm) | Soil particle diam.(mm),                                             |
|-----------|------------|-------------|--------|----------------------------------------------------------------------|
| (minutes) | reading, r | suspension, |        | $\mathbf{D} = \mathbf{k} \operatorname{sqrt}(\mathbf{L}/\mathbf{t})$ |
|           |            | P=100ra/w   |        |                                                                      |
| 2         | 48         | 46.5        | 11.4   | 0.02906                                                              |
| 5         | 43         | 41.6        | 11.4   | 0.01838                                                              |
| 15        | 32         | 31.0        | 11.4   | 0.01061                                                              |
| 30        | 28         | 27.1        | 11.7   | 0.00760                                                              |
| 60        | 20         | 19.4        | 13.0   | 0.00566                                                              |
| 250       | 18         | 17.4        | 13.3   | 0.00281                                                              |
| 1440      | 17         | 16.5        | 13.5   | 0.00118                                                              |

#### C. SIEVE ANALYSIS (of hydrometer sample)

Wt. passing #60 sieve (0.25mm) = 8 Wt retained #300 sieve (0.045mm) = 48.1

% Fine plus very fine sand = 16.6

#### **D. SOIL MORPHOLOGY**

Structure : Subangular Blocky

Consistence : Friable

**E. Soil Permeability CLASS RATING and TEXTURAL ANALYSIS** %Sand = 48.1 %Silt = 33.5 %Clay = 18.4

Soil Texture: LOAM Soil Permeability Class Rating: K2

# **Underwood Engineering Company**

143 Harding Avenue • Bellmawr, New Jersey 08031

William R. Underwood, P.E., President

(856) 933-1818 • Fax (215) 259-2372

Client: Una Voce Project: 8 Unit Apartments Requirement: Hydrometer & Sieve Analysis Date Performed: 1/3/2024 Location: TB-1 at 8ft to 10ft Test Number: 1 Project No:

#### **ASTM D-422 HYDROMETER AND SIEVE ANALYSIS**

#### A. COARSE FRAGMENT CONTENT

Total dry sample wt. = 250.0 Wt. retained #10 sieve (2mm) = 7.1

% Coarse framents = 2.8

#### **B. HYDROMETER ANALYSIS**

Weight used for hydrometer analysis = 100.0gPercent Passing #10 sieve = 97.2Temperature =  $70 \text{ }^{\circ}\text{C}$ a = 1.0 based on specific gravity of soil particles = 2.65 from Table 1 of ASTM D-422

w, weight used for hydrometer analysis/percent passing  $\#10 \ge 102.9$ 

L, value of effective depth, Table 2 of ASTM D-422 = see table below

k, based on specific gravity of soil particle and temperature = 0.01217

| Time, t<br>(minutes) | Hydrometer<br>reading, r | Percent in suspension, | L (cm) | Soil particle diam.(mm),<br>D = k sqrt(L/t) |
|----------------------|--------------------------|------------------------|--------|---------------------------------------------|
| (initiates)          | i cuunig, i              | P=100ra/w              |        |                                             |
| 2                    | 42                       | 40.8                   | 11.4   | 0.02906                                     |
| 5                    | 38                       | 36.9                   | 11.4   | 0.01838                                     |
| 15                   | 34                       | 33.0                   | 11.4   | 0.01061                                     |
| 30                   | 30                       | 29.2                   | 11.4   | 0.00750                                     |
| 60                   | 25                       | 24.3                   | 12.2   | 0.00549                                     |
| 250                  | 22                       | 21.4                   | 12.7   | 0.00274                                     |
| 1440                 | 18                       | 17.5                   | 13.3   | 0.00117                                     |

#### C. SIEVE ANALYSIS (of hydrometer sample)

Wt. passing #60 sieve (0.25 mm) = 36.5 Wt retained #300 sieve (0.045 mm) = 48.9

% Fine plus very fine sand = 74.6

#### **D. SOIL MORPHOLOGY**

Structure : Subangular Blocky

Consistence : Friable

**E. Soil Permeability CLASS RATING and TEXTURAL ANALYSIS** %Sand = 48.9 %Silt = 29.2 %Clay = 21.9

Soil Texture: LOAM Soil Permeability Class Rating: K2